Interferon-alpha inhibits adipogenesis via regulation of JAK/STAT1 signaling.

Biochim Biophys Acta

School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea. Electronic address:

Published: November 2016

Background Information: Adipose tissue regulates energy metabolism by means of adipocyte hypertrophy and/or the differentiation of pre-existing adipocytes. Excessive production of some cytokines in adipose tissue is known to be a negative regulator of adipocyte differentiation, and the resulting impaired adipogenesis contributes to disorders like insulin resistance. IFN-α is a key immunoregulatory cytokine in the development of type 1 diabetes, lipid disorders and insulin resistance; however, its effect on adipogenesis remains unknown.

Method: We examined the effect of IFN-α on adipocyte differentiation and its mechanisms. The effect of IFN-α on adipogenesis was evaluated by Western blotting, qRT-PCR, flow cytometric analysis and Oil Red O staining. We also investigated the role of STAT1 in adipogenesis using gene silencing analysis.

Results: IFN-α inhibited the accumulation of lipid droplets and the expression of adipogenesis related genes. The inhibition of adipocyte differentiation by IFN-α occurred in the early stages of differentiation. IFN-α arrested the cell cycle at the G0/G1 phase and regulated the expression of CDK2 and p21. These results were confirmed in MEF cells. Treatment with IFN-α increased STAT1 phosphorylation, and STAT1 siRNA or inhibitor prevented IFN-α from inhibiting the expression of PPARγ and C/EBPα as well as cell cycle progression in 3T3-L1 cells.

Conclusion: We suggest that IFN-α inhibits adipocyte differentiation during the early stage of adipogenesis by regulating the expression of PPARγ and C/EBPα as well as the cell cycle through JAK/STAT1 signaling pathways.

General Significance: Our study provides new insights into possible mechanisms of the anti-adipogenetic effects of IFN-α.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2016.07.009DOI Listing

Publication Analysis

Top Keywords

adipocyte differentiation
16
cell cycle
12
ifn-α
10
jak/stat1 signaling
8
adipose tissue
8
disorders insulin
8
insulin resistance
8
differentiation ifn-α
8
expression pparγ
8
pparγ c/ebpα
8

Similar Publications

Combination of rapamycin and adipose-derived mesenchymal stromal cells enhances therapeutic potential for osteoarthritis.

Stem Cell Res Ther

January 2025

IRMB, Univ Montpellier, INSERM, CHU St Eloi, 80 AV A Fliche, 34295-Cedex-05, Montpellier, France.

Background: The regenerative potential of mesenchymal stromal/stem cells (MSCs) has been extensively studied in clinical trials in the past decade. However, despite the promising regenerative properties documented in preclinical studies, for instance in osteoarthritis (OA), the therapeutic translation of these results in patients has not been fully conclusive. One factor contributing to this therapeutic barrier could be the presence of senescent cells in OA joints.

View Article and Find Full Text PDF

GDF15 inhibits early-stage adipocyte differentiation by enhancing HOP2 expression and suppressing C/EBPα expression.

Mol Cell Endocrinol

January 2025

Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea. Electronic address:

Excessive adipocyte differentiation and accumulation contribute to the development of metabolic disorders. Growth differentiation factor 15 (GDF15) plays an essential role in energy homeostasis and is considered an anti-obesity factor; however, elevated serum levels of endogenous GDF15 have been reported in certain individuals with obesity. In this study, to gain a better understanding of this complex relationship between GDF15 levels and obesity, we investigated GDF15 expression and function during adipogenesis.

View Article and Find Full Text PDF

Splicing to orchestrate cell fate.

Mol Ther Nucleic Acids

March 2025

Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, P.R. China.

Alternative splicing (AS) plays a critical role in gene expression by generating protein diversity from single genes. This review provides an overview of the role of AS in regulating cell fate, focusing on its involvement in processes such as cell proliferation, differentiation, apoptosis, and tumorigenesis. We explore how AS influences the cell cycle, particularly its impact on key stages like G1, S, and G2/M.

View Article and Find Full Text PDF

Investigating the genetic factors influencing human birth weight may lead to biological insights into fetal growth and long-term health. We report analyses of rare variants that impact birth weight when carried by either fetus or mother, using whole exome sequencing data in up to 234,675 participants. Rare protein-truncating and deleterious missense variants are collapsed to perform gene burden tests.

View Article and Find Full Text PDF

Obesity due to excessive body fat accumulation remains a global problem. Patients with obesity have high cortisol levels, and its dysregulation is caused by increased 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) levels. The effects and mechanism of J2H-1702, an 11β-HSD1 inhibitor, on nonalcoholic steatohepatitis (NASH) were explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!