Determining the age of sharks using vertebral banding is a vital component of management, but the causes of banding are not fully understood. Traditional shark ageing is based on fish otolith ageing methods where growth bands are assumed to result from varied seasonal calcification rates. Here we investigate these assumptions by mapping elemental distribution within the growth bands of vertebrae from six species of sharks representing four different taxonomic orders using scanning x-ray fluorescence microscopy. Traditional visual growth bands, determined with light microscopy, were more closely correlated to strontium than calcium in all species tested. Elemental distributions suggest that vertebral strontium bands may be related to environmental variations in salinity. These results highlight the requirement for a better understanding of shark movements, and their influence on vertebral development, if confidence in age estimates is to be improved. Analysis of shark vertebrae using similar strontium-focused elemental techniques, once validated for a given species, may allow more successful estimations of age on individuals with few or no visible vertebral bands.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4947923PMC
http://dx.doi.org/10.1038/srep29698DOI Listing

Publication Analysis

Top Keywords

growth bands
12
shark vertebrae
8
bands
5
strontium mineralization
4
shark
4
mineralization shark
4
vertebrae determining
4
determining age
4
age sharks
4
vertebral
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!