The advances in cluster-assembled materials where clusters serve as building blocks have opened new opportunities to develop ever more sensitive gas sensors. Here, using density functional theory calculations, the structural and electronic properties of cluster-assembled nanowires based on M12N12 (M = Al and Ga) clusters and their application as gas sensors have been investigated. Our results show that the nanowires can be produced via the coalescence of stable M12N12 fullerene-like clusters. The M12N12-based nanowires have semiconducting electrical properties with direct energy gaps, and are particularly stable at room temperature for long enough to allow for their characterization and applications. Furthermore, we found that the CO, NO, and NO2 molecules are chemisorbed on the M12N12-based nanowires with reasonable adsorption energies and apparent charge transfer. The electronic properties of the M12N12-based nanowires present dramatic changes after the adsorption of the CO, NO, and NO2 molecules, especially their electric conductivity. However, the adsorption of NO2 on the Al12N12-based nanowire is too strong, indicating an impractical recovery time as NO2 sensors. In addition to this, due to reasonable adsorption energies, apparent charge transfer, change in the electric conductivity, and the short recovery time, the Al12N12-based nanowire should be a good CO and NO sensor with quick response as well as short recovery time, while the Ga12N12-based nanowire should be a promising gas sensor for CO, NO, and NO2 detection.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6cp02931kDOI Listing

Publication Analysis

Top Keywords

gas sensors
12
m12n12-based nanowires
12
recovery time
12
cluster-assembled nanowires
8
nanowires based
8
based m12n12
8
m12n12 clusters
8
no2 detection
8
electronic properties
8
no2 molecules
8

Similar Publications

Optoelectronic synapse devices (OESDs) inspired by human visual systems enable to integration of light sensing, memory, and computing functions, greatly promoting the development of in-sensor computing techniques. Herein, dual-mode integration of bipolar response photodetectors (PDs) and artificial optoelectronic synapses based on ZnO/SnSe heterojunctions are presented. The function of the fabricated device can be converted between the PDs and OESDs by modulating the light intensity.

View Article and Find Full Text PDF

An intelligent humidity sensing system has been developed for real-time monitoring of human behaviors through respiration detection. The key component of this system is a humidity sensor that integrates a thermistor and a micro-heater. This sensor employs porous nanoforests as its sensing material, achieving a sensitivity of 0.

View Article and Find Full Text PDF

The objective of this study was to evaluate the flavor profiles of water-boiled pork meatballs at different ultrasonic powers (0, 150, 300, 450, 600, and 750 W) using solid-phase microextraction gas chromatography-mass spectrometry (SPME-GC-MS) combined with electronic nose (E-nose). A total of 36 volatile compounds were determined by SPME-GC-MS, including alcohols, aromatic hydrocarbons, aldehydes, terpenes, alkanes, phenols, ketones, and other. With the appropriate ultrasound treatment, the type and relative content of volatile compounds were significantly increased (P < 0.

View Article and Find Full Text PDF

Volatile sulfur compounds (VSCs) are prevalent human biogases detectable in individuals with periodontal disease; therefore, measuring VSC gases in human breath can yield significant, noninvasive diagnostic information indicative of such diseases. In this study, we developed a gas sensor with selective and enhanced sensing capabilities for VSCs methyl mercaptan and hydrogen sulfide. This sensor comprises a cellulose paper substrate impregnated with 2,2'-dithiobis(5-nitropyridine) and sodium acetate.

View Article and Find Full Text PDF

Design Principles From Natural Olfaction for Electronic Noses.

Adv Sci (Weinh)

January 2025

Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA.

Natural olfactory systems possess remarkable sensitivity and precision beyond what is currently achievable by engineered gas sensors. Unlike their artificial counterparts, noses are capable of distinguishing scents associated with mixtures of volatile molecules in complex, typically fluctuating environments and can adapt to changes. This perspective examines the multifaceted biological principles that provide olfactory systems their discriminatory prowess, and how these ideas can be ported to the design of electronic noses for substantial improvements in performance across metrics such as sensitivity and ability to speciate chemical mixtures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!