Surface imprinting strategy is one of the promising approaches to synthesize plastic antibodies while overcoming the problems in the protein imprinting research. In this study, we focused our attentions on developing two-step polymerization to imprint on the bare surface employing polyethyleneimine (PEI) assisted-coordination of template molecules, lysozyme. For this aim, we firstly synthesized poly(2-hydroxyethyl methacrylate-glycidyl methacrylate), poly(HEMA-GMA) cryogels as a bare structure. Then, we immobilized PEI onto the cryogels through the addition reaction between GMA and PEI molecules. After that, we determined the amount of free amine (NH2) groups of PEI molecules, subsequently immobilized methacrylate functionalities onto the half of them and another half was used to chelate Cu(II) ions as a mediator between template, lysozyme and PEI groups. After the characterization of the materials developed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and the micro-computed tomography (μCT), we optimized the lysozyme adsorption conditions from aqueous solution. Before performing lysozyme purification from chicken egg white, we evaluated the effects of pH, interaction time, the initial lysozyme concentration, temperature and ionic strength on the lysozyme adsorption. Moreover, the selectivity of surface imprinted cryogels was examined against cytochrome c and bovine serum albumin (BSA) as the competitors. Finally, the mathematical modeling, which was applied to describe the adsorption process, showed that the experimental data is very well-fitted to the Langmuir adsorption isotherm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2016.06.060 | DOI Listing |
Mater Today Bio
February 2025
China Uruguay Bio-Nano Pharmaceutical Joint Laboratory, Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, 308 Ningxia Road, Qingdao, 266071, Shandong, China.
Well-designed artificial scaffolds are urgently needed due to the limited self-repair capacity of bone, which hampers effective regeneration in critical defects. Optimal scaffolds must provide physical guidance to recruit cells and immune regulation to improve the regenerative microenvironment. This study presents a novel scaffold composed of dual-sided centripetal microgrooved poly(D,L-lactide-co-caprolactone) (PLCL) film combined with a dynamic hydrogel containing prednisolone (PLS)-loaded Prussian blue nanoparticles (PB@PLS).
View Article and Find Full Text PDFAnalyst
January 2025
College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
A novel electrochemical microsensor was constructed on a traditional acupuncture needle (AN) and used to monitor a biomarker of the SARS-CoV-2-N protein. The reversible interaction of the borate bond between the -diol in this glycoprotein and the phenylboronic acid in 4-mercaptophenylboronic acid (4-MPBA) was accomplished. This interaction was applied to anchor the SARS-CoV-2-N protein onto 4-MPBA, which was covalently self-assemblied onto electrodeposited AuNPs by the S-Au bond.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Key Laboratory of Oil and Gas Fine Chemicals of Ministry of Education, School of Chemical Engineering, Xinjiang University, Urumqi 830017, China.
Lead (Pb) is classified as a prevalent metallic pollutant, significantly impacting the ecological environment, especially human health. Consequently, it is crucial to develop adsorbent materials that are environmentally friendly, cost-effective, and which possess high selectivity. This study aims to fabricate a Pb(II)-imprinted acrylonitrile-co-acrylic acid composite material by using modified sand particles as the carrier, and then to investigate its properties.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Process Engineering and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław, 50-370, Poland.
The presence of traces of herbicides in ground and surface waters can have adverse impacts on humans and the environment. Therefore, developing a highly selective and reusable adsorbent for monitoring water quality has become important. This article describes smart green molecularly imprinted polymers (MIPs) as selective sorbents of S-metolachlor herbicide for solid phase extraction (SPE).
View Article and Find Full Text PDFSmall Methods
January 2025
Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, Lecce, 73100, Italy.
Molecularly Imprinted Polymers (MIPs) have gained prominence as synthetic receptors, combining simplicity of synthesis with robust molecular recognition akin to antibodies and enzymes. One of their main application areas is chemical sensing. However, direct integration of MIPs with nanostructured transducers, crucial for enhancing sensing capabilities and broadening MIPs sensing applications, remains limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!