Controlling gelation with sequence: Towards programmable peptide hydrogels.

Acta Biomater

School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand; School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University, Wellington 6140, New Zealand. Electronic address:

Published: October 2016

Unlabelled: The self-assembling peptide IKHLSVN, inspired by inspection of a protein-protein interface, has previously been reported as one of a new class of bio-inspired peptides. Here the peptide, dubbed littleSven, and modifications designed to probe the resilience of the sequence to self-assembly, is characterised. Although the parent peptide did not form a hydrogel, small modifications to the sequence (one side chain or an N-terminus modification) led to hydrogels with properties (eg. gelation time and rheology) that could be tuned by these small alterations. The results suggest that peptides derived from protein-protein interfaces are resilient to changes in sequence and can be harnessed to form hydrogels with controlled properties.

Statement Of Significance: Natural occurring self-assembly peptides are attractive building blocks for engineered bionanomaterials due to their biocompatibility and biodegradability. The bio-inspired self-assembly peptide, IKHLSVN, was used as a template to design peptides that readily formed hydrogels. The peptide sequence was specifically tuned to create a bionanomaterial with different properties that could be exploited downstream for a broad range of applications: nanowires, drug release, vaccine adjuvant, tissue engineering. We describe how small modifications to the parent peptide alter the amyloid-like characteristics and gel strength for each peptide.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2016.07.021DOI Listing

Publication Analysis

Top Keywords

peptide
8
peptide ikhlsvn
8
parent peptide
8
small modifications
8
sequence
5
controlling gelation
4
gelation sequence
4
sequence programmable
4
programmable peptide
4
hydrogels
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!