Pharmacological intervention with 5-lipoxygenase (5-LO) pathway leading to suppression of leukotriene (LT) biosynthesis is a clinically validated strategy for treatment of respiratory and cardiovascular diseases such as asthma and atherosclerosis. Here we describe the synthesis of a series of C(5)-substituted analogues of the previously described 5-LO-activating protein (FLAP) inhibitor BRP-7 (IC50 = 0.31 μM) to explore the effects of substitution at the C(5)-benzimidazole (BI) ring as a strategy to increase the potency against FLAP-mediated 5-LO product formation. Incorporation of polar substituents on the C(5) position of the BI core, exemplified by compound 11 with a C(5)-nitrile substituent, significantly enhances the potency for suppression of 5-LO product synthesis in human neutrophils (IC50 = 0.07 μM) and monocytes (IC50 = 0.026 μM).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2016.07.004 | DOI Listing |
Nat Commun
January 2025
Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany.
Tracheal tuft cells shape immune responses in the airways. While some of these effects have been attributed to differential release of either acetylcholine, leukotriene C4 and/or interleukin-25 depending on the activating stimuli, tuft cell-dependent mechanisms underlying the recruitment and activation of immune cells are incompletely understood. Here we show that Pseudomonas aeruginosa infection activates mouse tuft cells, which release ATP via pannexin 1 channels.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, 95 S 2000 E, Salt Lake City, UT 84112, USA.
Heart failure with preserved ejection fraction (HFpEF) is increasing at an alarming rate worldwide, with limited effective therapeutic interventions in patients. Sudden cardiac death (SCD) and ventricular arrhythmias present substantial risks for the prognosis of these patients. Obesity is a risk factor for HFpEF and life-threatening arrhythmias.
View Article and Find Full Text PDFCurr Opin Allergy Clin Immunol
February 2025
Division of Allergic Diseases, Mayo Clinic Rochester, Rochester, Minnesota, USA.
Purpose Of Review: Mast cell activation is defined by activation of mast cells by varying stimuli with release of chemical mediators either through degranulation or release of de novo synthesized proteins or lipid mediators. Currently, tryptase measurement increase during symptomatic episodes is the most accepted biomarker measurement for mast cell activation. However, newer diagnostic tools including clinically available urinary mast cell mediators are noninvasive and can be more readily obtained compared to serum tryptase levels.
View Article and Find Full Text PDFCardiovasc Ther
January 2025
Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China.
Cysteinyl leukotrienes (LTs) and their receptors are involved in the pathogenesis of abdominal aortic aneurysms (AAAs). However, whether CysLT1 receptor antagonists such as montelukast can influence experimental nondissecting AAA remains unclear. Nondissecting AAAs were induced in C57BL/6J mice by transient aortic luminal infusion of porcine pancreatic elastase (PPE).
View Article and Find Full Text PDFJ Med Virol
January 2025
Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia.
The two most clinically important members of the flavivirus genus, Zika virus (ZIKV) and dengue virus (DENV) pose a significant public health challenge. They cause a range of diseases in humans, from hemorrhagic to neurological manifestations, leading to economic and social burden worldwide. Nevertheless, there are no approved antiviral drugs to treat these infections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!