Thermophilic sludge digestion improves energy balance and nutrient recovery potential in full-scale municipal wastewater treatment plants.

Bioresour Technol

Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium; Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium. Electronic address:

Published: October 2016

The conventional treatment of municipal wastewater by means of activated sludge is typically energy demanding. Here, the potential benefits of: (1) the optimization of mesophilic digestion; and (2) transitioning to thermophilic sludge digestion in three wastewater treatment plants (Tilburg-Noord, Land van Cuijk and Bath) in the Netherlands is evaluated, including a full-scale trial validation in Bath. In Tilburg-Noord, thermophilic sludge digestion covered the energy requirements of the plant (102%), whereas 111% of sludge operational treatment costs could be covered in Bath. Thermophilic sludge digestion also resulted in a strong increase in nutrient release. The potential for nutrient recovery was evaluated via: (1) stripping/absorption of ammonium; (2) autotrophic removal of ammonium via partial nitritation/anammox; and (3) struvite precipitation. This research shows that optimization of sludge digestion may lead to a strong increase in energy recovery, sludge treatment costs reduction, and the potential for advanced nutrient management in full-scale sewage treatment plants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2016.06.119DOI Listing

Publication Analysis

Top Keywords

sludge digestion
20
thermophilic sludge
16
treatment plants
12
nutrient recovery
8
municipal wastewater
8
wastewater treatment
8
treatment costs
8
strong increase
8
sludge
7
digestion
6

Similar Publications

Excess biological sludge processing and disposal have a significant impact on the energy balance and economics of wastewater treatment operations, and on receiving environments. Anaerobic digestion is probably the most widespread in-plant sludge processing method globally, since it stabilizes and converts biosolids organic matter into biogas, allowing partial recovery of their embedded chemical energy. A considerable number of studies concerning applicable techniques to improve biogas production, both in quantity and quality, include pre-treatment strategies to promote biosolids disintegration aimed at the release and solubilisation of intracellular energy compounds, inorganic/biological amendments aimed at improving process performance, and sludge thermal pre-treatment.

View Article and Find Full Text PDF

Shotgun and proximity-ligation metagenomic sequencing were used to generate thousands of metagenome assembled genomes (MAGs) from the untreated wastewater, activated sludge bioreactors, and anaerobic digesters from two full-scale municipal wastewater treatment facilities. Analysis of the antibiotic resistance genes (ARGs) in the pool of contigs from the shotgun metagenomic sequences revealed significantly different relative abundances and types of ARGs in the untreated wastewaster compared to the activated sludge bioreactors or the anaerobic digesters (p < 0.05).

View Article and Find Full Text PDF

Adding additives exogenously is an effective strategy to enhance methanogenic activity and improve AD stability. Corn straw-based biochar@MIL-88A(Fe) (BM) was synthesized herewith and used as an exogenous additive to boost methane (CH) production. After adding BM at 250 mg/g WAS VS, the accumulative CH production and maximum CH yield increased by 1.

View Article and Find Full Text PDF

Microbial activity of the inoculum determines the impact of activated carbon, magnetite and zeolite on methane production.

Sci Total Environ

January 2025

CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal. Electronic address:

The conversion of organic matter to methane through anaerobic digestion (AD) process can be enhanced by different materials. However, literature reports show inconsistent results on the effect of materials in different AD systems. In this study, we evaluated the influence of the inoculum's activity on methane production (MP) efficiency in the presence of different materials (activated carbon (AC), magnetite (Mag), and zeolite (Zeo)).

View Article and Find Full Text PDF

Combination of anaerobic digestion and sludge biochar for bioenergy conversion: Estimation and evaluation of energy production, CO emission, and cost analysis.

J Environ Manage

January 2025

Bioenergy Research Institute - IPBEN, UNESP, Institute of Chemistry, Araraquara, SP, Brazil; São Paulo State University (UNESP), Institute of Chemistry, Campus Araraquara, Department of Engineering, Physics and Mathematics, Rua Prof. Francisco Degni, 55, 14800-900, Araraquara, SP, Brazil. Electronic address:

Waste-to-energy technologies involve the conversion of several wastes to useful energy forms like biogas and biochar, which include biological and thermochemical processes, as well as the combination of both systems. Assessing the economic and environmental impacts is an important step to integrate sustainability and economic viability at anaerobic digestion systems and its waste management. Energy production, CO emissions, cost analysis, and an overall process evaluation were conducted, relying on findings from both laboratory and pilot-scale experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!