Electrochemical treatment of concentrate from reverse osmosis of sanitary landfill leachate.

J Environ Manage

FibEnTech/UBI and Department of Chemistry, Universidade da Beira Interior, 6201-001 Covilhã, Portugal.

Published: October 2016

Conventional sanitary landfill leachate treatment has recently been complemented and, in some cases, completely replaced by reverse osmosis technology. Despite the good quality of treated water, the efficiency of the process is low and a large volume of reverse osmosis concentrate has to be either discharged or further treated. In this study, the use of anodic oxidation combined with electro-Fenton processes to treat the concentrate obtained in the reverse osmosis of sanitary landfill leachate was evaluated. The anodic oxidation pretreatment was performed in a pilot plant using an electrochemical cell with boron-doped diamond electrodes. In the electro-Fenton experiments, a boron-doped diamond anode and carbon-felt cathode were used, and the influence of the initial pH and iron concentration were studied. For the experimental conditions, the electro-Fenton assays performed at an initial pH of 3 had higher organic load removal levels, whereas the best nitrogen removal was attained when the electrochemical process was performed at the natural pH of 8.8. The increase in the iron concentration had an adverse impact on treatment under natural pH conditions, but it enhanced the nitrogen removal in the electro-Fenton assays performed at an initial pH of 3. The combined anodic oxidation and electro-Fenton process is useful for treating the reverse osmosis concentrate because it is effective at removing the organic load and nitrogen-containing species. Additionally, this process potentiates the increase in the biodegradability index of the treated effluent.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2016.06.069DOI Listing

Publication Analysis

Top Keywords

reverse osmosis
20
sanitary landfill
12
landfill leachate
12
anodic oxidation
12
concentrate reverse
8
osmosis sanitary
8
osmosis concentrate
8
boron-doped diamond
8
iron concentration
8
electro-fenton assays
8

Similar Publications

Forward osmosis (FO) technology, known for its minimal energy requirements, excellent resistance to fouling, and significant commercial potential, shows enormous promise in the development of sustainable technologies, especially with regard to seawater desalination and wastewater. In this study, we improved the performance of the FO membrane in terms of its mechanical strength and hydrophilic properties. Generally, the water flux () of polyisophenylbenzamide (PMIA) thin-film composite (TFC)-FO membranes is still inadequate for industrial applications.

View Article and Find Full Text PDF

Membrane engineering is a complex field involving the development of the most suitable membrane process for specific purposes and dealing with the design and operation of membrane technologies. This study analyzed 1424 articles on reverse osmosis (RO) membrane engineering from the Scopus database to provide guidance for future studies. The results show that since the first article was published in 1964, the domain has gained popularity, especially since 2009.

View Article and Find Full Text PDF

System Dynamics Modeling of Scale Formation in Membrane Distillation Systems for Seawater and RO Brine Treatment.

Membranes (Basel)

November 2024

Civil and Environmental Engineering, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 136-702, Republic of Korea.

To overcome the limitations of traditional Reverse Osmosis (RO) desalination, Membrane Distillation (MD) has gained attention as an effective solution for improving the treatment of seawater and RO brine. Despite its potential, the formation of inorganic scales, particularly calcium sulfate (CaSO), continues to pose a major challenge. This research aims to explore the scaling mechanisms in MD systems through a combination of experimental analysis and dynamic modeling.

View Article and Find Full Text PDF

Trace organic contaminants (TrOCs), including pharmaceutically active compounds (PhACs), present significant challenges for conventional water treatment processes and pose potential risks to environmental and human health. To address these issues, nanofiltration (NF) and reverse osmosis (RO) membrane technologies have gained attention. This study aims to evaluate the performance of NF and RO membranes in removing TrOCs from wastewater and develop a predictive model using the Solution Diffusion Model.

View Article and Find Full Text PDF

Novel strains, JCM 35526 and 261-2C, were isolated from biofilm formed on a reverse osmosis membrane in the phosphate recovery system of a semiconductor factory. Morphological, biochemical, physiological, and chemotaxonomic analyses as well as sequence analysis of the concatenated internal transcribed spacer region and D1/D2 domains of the large subunit of the rRNA gene confirmed that strains JCM 35526 and 261-2C, were distinct from all currently known species. The holotype and isotype strains of the new species, which is named , are JCM 35526 and MUCL 58310, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!