A biphasic effect of TNF-α in regulation of the Keap1/Nrf2 pathway in cardiomyocytes.

Redox Biol

Cardiac Aging & Redox Signaling Laboratory, Division of Molecular & Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Division of Cardiovascular, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, United States; Center for Free Radical Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, United States. Electronic address:

Published: October 2016

Antagonizing TNF-α signaling attenuates chronic inflammatory disease, but is associated with adverse effects on the cardiovascular system. Therefore the impact of TNF-α on basal control of redox signaling events needs to be understand in more depth. This is particularly important for the Keap1/Nrf2 pathway in the heart and in the present study we hypothesized that inhibition of a low level of TNF-α signaling attenuates the TNF-α dependent activation of this cytoprotective pathway. HL-1 cardiomyocytes and TNF receptor1/2 (TNFR1/2) double knockout mice (DKO) were used as experimental models. TNF-α (2-5ng/ml, for 2h) evoked significant nuclear translocation of Nrf2 with increased DNA/promoter binding and transactivation of Nrf2 targets. Additionally, this was associated with a 1.5 fold increase in intracellular glutathione (GSH). Higher concentrations of TNF-α (>10-50ng/ml) were markedly suppressive of the Keap1/Nrf2 response and associated with cardiomyocyte death marked by an increase in cleavage of caspase-3 and PARP. In vivo experiments with TNFR1/2-DKO demonstrates that the expression of Nrf2-regulated proteins (NQO1, HO-1, G6PD) were significantly downregulated in hearts of the DKO when compared to WT mice indicating a weakened antioxidant system under basal conditions. Overall, these results indicate that TNF-α exposure has a bimodal effect on the Keap1/Nrf2 system and while an intense inflammatory activation suppresses expression of antioxidant proteins a low level appears to be protective.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4961303PMC
http://dx.doi.org/10.1016/j.redox.2016.06.004DOI Listing

Publication Analysis

Top Keywords

keap1/nrf2 pathway
8
tnf-α signaling
8
signaling attenuates
8
low level
8
tnf-α
7
biphasic tnf-α
4
tnf-α regulation
4
keap1/nrf2
4
regulation keap1/nrf2
4
pathway cardiomyocytes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!