Previous results from our laboratory showed that phosphorylation of ryanodine receptor 2 (RyR2) by Ca(2+) calmodulin-dependent kinase II (CaMKII) was a critical but not the unique event responsible for the production of reperfusion-induced arrhythmogenesis, suggesting the existence of other mechanisms cooperating in an additive way to produce these rhythm alterations. Oxidative stress is a prominent feature of ischemia/reperfusion injury. Both CaMKII and RyR2 are proteins susceptible to alteration by redox modifications. This study was designed to elucidate whether CaMKII and RyR2 redox changes occur during reperfusion and whether these changes are involved in the genesis of arrhythmias. Langendorff-perfused hearts from rats or transgenic mice with genetic ablation of CaMKII phosphorylation site on RyR2 (S2814A) were subjected to ischemia-reperfusion in the presence or absence of a free radical scavenger (mercaptopropionylglycine, MPG) or inhibitors of NADPH oxidase and nitric oxide synthase. Left ventricular contractile parameters and monophasic action potentials were recorded. Oxidation and phosphorylation of CaMKII and RyR2 were assessed. Increased oxidation of CaMKII during reperfusion had no consequences on the level of RyR2 phosphorylation. Avoiding the reperfusion-induced thiol oxidation of RyR2 with MPG produced a reduction in the number of arrhythmias and did not modify the contractile recovery. Conversely, selective prevention of S-nitrosylation and S-glutathionylation of RyR2 was associated with higher numbers of arrhythmias and impaired contractility. In S2814A mice, treatment with MPG further reduced the incidence of arrhythmias. Taken together, the results suggest that redox modification of RyR2 synergistically with CaMKII phosphorylation modulates reperfusion arrhythmias.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5142185PMC
http://dx.doi.org/10.1152/ajpheart.00142.2016DOI Listing

Publication Analysis

Top Keywords

camkii ryr2
12
ryr2
9
redox modifications
8
ryanodine receptor
8
camkii phosphorylation
8
camkii
7
arrhythmias
6
phosphorylation
5
reversible redox
4
modifications ryanodine
4

Similar Publications

RyR2 phosphorylation at serine-2814 increases cardiac tolerance to arrhythmogenic Ca alternans in mice.

J Mol Cell Cardiol

January 2025

Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", CCT-CONICET/UNLP La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata 1900, Argentina. Electronic address:

View Article and Find Full Text PDF

Ischaemic heart disease (IHD) remains a major cause of death and morbidity. Klotho is a well-known anti-ageing factor with relevant cardioprotective actions, at least when renal dysfunction is present, but its actions are much less known when renal function is preserved. This study investigated Klotho as a biomarker and potential novel treatment of IHD-associated complications after myocardial infarction (MI) under preserved renal function.

View Article and Find Full Text PDF

Neuronal dendrites must relay synaptic inputs over long distances, but the mechanisms by which activity-evoked intracellular signals propagate over macroscopic distances remain unclear. Here, we discovered a system of periodically arranged endoplasmic reticulum-plasma membrane (ER-PM) junctions tiling the plasma membrane of dendrites at ∼1 μm intervals, interlinked by a meshwork of ER tubules patterned in a ladder-like array. Populated with Junctophilin-linked plasma membrane voltage-gated Ca channels and ER Ca-release channels (ryanodine receptors), ER-PM junctions are hubs for ER-PM crosstalk, fine-tuning of Ca homeostasis, and local activation of the Ca/calmodulin-dependent protein kinase II.

View Article and Find Full Text PDF

Background: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a genetic arrhythmic syndrome caused by mutations in the calcium (Ca) release channel ryanodine receptor (RyR2) and its accessory proteins. These mutations make the channel leaky, resulting in Ca-dependent arrhythmias. Besides arrhythmias, CPVT hearts typically lack structural cardiac remodeling, a characteristic often observed in other cardiac conditions (heart failure, prediabetes) also marked by RyR2 leak.

View Article and Find Full Text PDF

Intermittent hypoxia (IH) has been extensively studied in recent years, demonstrating adverse and beneficial effects on several physiological systems. However, the precise mechanism underlying its cardiac effects on the heart remains unclear. This study aims to explore the effect of treatment on atrial fibrillation under IH conditions, providing data that can potentially be used in the treatment of heart disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!