The centrosome-associated proteins Ninein (Nin) and Ninein-like protein (Nlp) play significant roles in microtubule stability, nucleation and anchoring at the centrosome in mammalian cells. Here, we investigate Blastoderm specific gene 25D (Bsg25D), which encodes the only Drosophila protein that is closely related to Nin and Nlp. In early embryos, we find that Bsg25D mRNA and Bsg25D protein are closely associated with centrosomes and astral microtubules. We show that sequences within the coding region and 3'UTR of Bsg25D mRNAs are important for proper localization of this transcript in oogenesis and embryogenesis. Ectopic expression of eGFP-Bsg25D from an unlocalized mRNA disrupts microtubule polarity in mid-oogenesis and compromises the distribution of the axis polarity determinant Gurken. Using total internal reflection fluorescence microscopy, we show that an N-terminal fragment of Bsg25D can bind microtubules in vitro and can move along them, predominantly toward minus-ends. While flies homozygous for a Bsg25D null mutation are viable and fertile, 70% of embryos lacking maternal and zygotic Bsg25D do not hatch and exhibit chromosome segregation defects, as well as detachment of centrosomes from mitotic spindles. We conclude that Bsg25D is a centrosomal protein that, while dispensable for viability, nevertheless helps ensure the integrity of mitotic divisions in Drosophila.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5004617 | PMC |
http://dx.doi.org/10.1242/bio.019638 | DOI Listing |
Nat Commun
October 2022
European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, 69117, Germany.
Intracellular RNA localization is a widespread and dynamic phenomenon that compartmentalizes gene expression and contributes to the functional polarization of cells. Thus far, mechanisms of RNA localization identified in Drosophila have been based on a few RNAs in different tissues, and a comprehensive mechanistic analysis of RNA localization in a single tissue is lacking. Here, by subcellular spatial transcriptomics we identify RNAs localized in the apical and basal domains of the columnar follicular epithelium (FE) and we analyze the mechanisms mediating their localization.
View Article and Find Full Text PDFJ Cell Biol
February 2019
Program in Developmental Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
Skeletal muscle consists of multinucleated cells in which the myonuclei are evenly spaced throughout the cell. In , this pattern is established in embryonic myotubes, where myonuclei move via microtubules (MTs) and the MT-associated protein Ensconsin (Ens)/MAP7, to achieve their distribution. Ens regulates multiple aspects of MT biology, but little is known about how Ens itself is regulated.
View Article and Find Full Text PDFInsect Mol Biol
June 2018
Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia.
The endosymbiotic bacterium Wolbachia infects a wide array of insect hosts and has been implicated in a range of biological modifications as a consequence of its infection. Previously, it was shown that the transcription factor GATA4 was significantly induced in Wolbachia wMelPop-CLA strain infected Aedes aegypti whole mosquitoes and cells. Here, we provide evidence that this induction also occurs in mosquito ovaries where the ovary-specific genes blastoderm-specific protein 25D (Bsg25D) and imaginal disc growth factor (Disc) are suppressed by Wolbachia.
View Article and Find Full Text PDFBiol Open
August 2016
Department of Biology, McGill University, Montréal, Québec H3G 0B1, Canada
The centrosome-associated proteins Ninein (Nin) and Ninein-like protein (Nlp) play significant roles in microtubule stability, nucleation and anchoring at the centrosome in mammalian cells. Here, we investigate Blastoderm specific gene 25D (Bsg25D), which encodes the only Drosophila protein that is closely related to Nin and Nlp. In early embryos, we find that Bsg25D mRNA and Bsg25D protein are closely associated with centrosomes and astral microtubules.
View Article and Find Full Text PDFMol Biol Cell
June 2016
Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-4300
Ninein (Nin) is a centrosomal protein whose gene is mutated in Seckel syndrome (SCKL, MIM 210600), an inherited recessive disease that results in primordial dwarfism, cognitive deficiencies, and increased sensitivity to genotoxic stress. Nin regulates neural stem cell self-renewal, interkinetic nuclear migration, and microtubule assembly in mammals. Nin is evolutionarily conserved, yet its role in cell division and development has not been investigated in a model organism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!