Unlabelled: Pathological proliferation of human airway smooth muscle cells (HASMCs) causes hyperplasia in chronic lung diseases. Signaling pathways that link airway inflammation to HASMC proliferation might provide therapeutic targets for the prevention of airway remodeling and chronic lung diseases. Endothelin-1 (ET-1) signals via endothelin-A- and B-receptors (ETAR, ETBR) to perpetuate HASMC-associated and TNFα-dependent inflammatory processes.
Hypothesis: endothelin receptor antagonists (ERAs) suppress HASMC proliferation induced by inflammatory cytokines. HASMCs were stimulated ex vivo with cytokines in the presence or absence of ERAs (ETAR-specific/selective: BQ123, ambrisentan; ETBR-specific: BQ788; non-selective: bosentan, macitentan, ACT-132577) or cytokine-blocking antibodies. Cell counts, DNA-synthesis (BrdU-incorporation assay), cytokine production (ELISA) and ETBR expression (whole-genome microarray data, western blot) were analyzed. ET-1-induced HASMC proliferation and DNA-synthesis were reduced by protein kinase inhibitors and ETAR-specific/selective ERAs but not by BQ788. TNFα-induced HASMC proliferation and DNA-synthesis were reduced by all ERAs. TNFα induced ET-1 and ETBR expression. TNFα- and ET-1-induced GM-CSF releases were both reduced by BQ123 and BQ788. TNFα- and ET-1-induced IL-6 releases were both reduced by BQ123 but not by BQ788. Combined but not single blockade of GM-CSF-receptor-α-chain and IL-6 reduced TNFα- and ET-1-induced HASMC proliferation and DNA-synthesis. Combined but not single treatment with GM-CSF and IL-6 induced HASMC proliferation and DNA-synthesis in the presence of ET-1. In conclusion, TNFα induces HASMC proliferation via ET-1/GM-CSF/IL-6. ETBR requires up-regulation by TNFα to mediate ET-1 effects on HASMC proliferation. This signaling cascade links airway inflammation to HASMC-associated remodeling processes and is sensitive to ERAs. Therefore, ERAs could prevent inflammation-induced airway smooth muscle hyperplasia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcp.2016.07.008 | DOI Listing |
J Ethnopharmacol
January 2025
Xinjiang Institute of Drug Control, Urumqi, Xinjiang, 830002, China.
Biochem Genet
December 2024
Department of Cardiovascular Medicine, Shanghai Baoshan Luodian Hospital, No. 88, Yongshun Road, Baoshan District, Shanghai, 201908, China.
Recent studies highlight the crucial role of microRNAs (miRNAs) in coronary artery disease (CAD). This retrospective study investigated the abundance of miR-432-5p in the serum of CAD patients and explored its role. 252 volunteers were included.
View Article and Find Full Text PDFAntioxid Redox Signal
December 2024
Department of Cardiology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China.
Atherosclerosis
December 2024
Department of Cardiac Surgery, Fujian Medical University Union Hospital, China; The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Pathophysiology, The School of Basic Medical Sciences, China; Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China. Electronic address:
Background And Aims: Aortic dissection (AD) is a fatal condition with a complicated pathogenesis. High mobility group protein B2 (HMGB2) is a member of the high mobility group protein family; HMGB2 is involved in innate immunity and inflammatory diseases, but its role in AD remains unclear.
Methods: HMGB2 mice were generated and treated with β-aminopropionitrile and angiotensin II (Ang II) to establish an AD model.
J Biol Eng
October 2024
Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, 44115, USA.
Type 2 diabetes mellitus (T2DM) is a major public health concern with significant cardiovascular complications (CVD). Despite extensive epidemiological data, the molecular mechanisms relating hyperglycemia to CVD remain incompletely understood. We here investigated the impact of chronic hyperglycemia on human aortic smooth muscle cells (HASMCs) cultured under varying glucose conditions in vitro, mimicking normal (5 mmol/L), pre-diabetic (10 mmol/L), and diabetic (20 mmol/L) conditions, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!