Evaluation of CYP2B6 Induction and Prediction of Clinical Drug-Drug Interactions: Considerations from the IQ Consortium Induction Working Group-An Industry Perspective.

Drug Metab Dispos

Pfizer Inc., Groton, Connecticut (O.A.F.); AbbVie Inc., North Chicago, Illinois (M.S.); Merck Research Laboratories, Rahway, New Jersey (J.P.); Bristol-Myers Squibb, Wallingford, Connecticut (M.W.S.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Novartis, East Hanover, New Jersey (H.J.E.); GlaxoSmithKline, King of Prussia, Pennsylvania (L.C.); and University of Maryland School of Pharmacy, Baltimore, Maryland (H.W.).

Published: October 2016

Drug-drug interactions (DDIs) due to CYP2B6 induction have recently gained prominence and clinical induction risk assessment is recommended by regulatory agencies. This work aimed to evaluate the potency of CYP2B6 versus CYP3A4 induction in vitro and from clinical studies and to assess the predictability of efavirenz versus bupropion as clinical probe substrates of CYP2B6 induction. The analysis indicates that the magnitude of CYP3A4 induction was higher than CYP2B6 both in vitro and in vivo. The magnitude of DDIs caused by induction could not be predicted for bupropion with static or dynamic models. On the other hand, the relative induction score, net effect, and physiologically based pharmacokinetics SimCYP models using efavirenz resulted in improved DDI predictions. Although bupropion and efavirenz have been used and are recommended by regulatory agencies as clinical CYP2B6 probe substrates for DDI studies, CYP3A4 contributes to the metabolism of both probes and is induced by all reference CYP2B6 inducers. Therefore, caution must be taken when interpreting clinical induction results because of the lack of selectivity of these probes. Although in vitro-in vivo extrapolation for efavirenz performed better than bupropion, interpretation of the clinical change in exposure is confounded by the coinduction of CYP2B6 and CYP3A4, as well as the increased contribution of CYP3A4 to efavirenz metabolism under induced conditions. Current methods and probe substrates preclude accurate prediction of CYP2B6 induction. Identification of a sensitive and selective clinical substrate for CYP2B6 (fraction metabolized > 0.9) is needed to improve in vitro-in vivo extrapolation for characterizing the potential for CYP2B6-mediated DDIs. Alternative strategies and a framework for evaluating the CYP2B6 induction risk are proposed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11024975PMC
http://dx.doi.org/10.1124/dmd.116.071076DOI Listing

Publication Analysis

Top Keywords

cyp2b6 induction
20
induction
12
probe substrates
12
cyp2b6
10
clinical
8
drug-drug interactions
8
clinical induction
8
induction risk
8
recommended regulatory
8
regulatory agencies
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!