Macrophage-based cell therapies: The long and winding road.

J Control Release

The UC-Berkeley-UCSF Graduate Program in Bioengineering, University of California Berkeley, Berkeley 94720, USA; Department of Bioengineering, Therapeutic Sciences and Pharmaceutical Chemistry, University of California San Francisco, San Francisco 94143, USA. Electronic address:

Published: October 2016

In the quest for better medicines, attention is increasingly turning to cell-based therapies. The rationale is that infused cells can provide a targeted therapy to precisely correct a complex disease phenotype. Between 1987 and 2010, autologous macrophages (MΦs) were used in clinical trials to treat a variety of human tumors; this approach provided a modest therapeutic benefit in some patients but no lasting remissions. These trials were initiated prior to an understanding of: the complexity of MΦ phenotypes, their ability to alter their phenotype in response to various cytokines and/or the environment, and the extent of survival of the re-infused MΦs. It is now known that while inflammatory MΦs can kill tumor cells, the tumor environment is able to reprogram MΦs into a tumorigenic phenotype; inducing blood vessel formation and contributing to a cancer cell growth-promoting milieu. We review how new information enables the development of large numbers of ex vivo generated MΦs, and how conditioning and gene engineering strategies are used to restrict the MΦ to an appropriate phenotype or to enable production of therapeutic proteins. We survey applications in which the MΦ is loaded with nanomedicines, such as liposomes ex vivo, so when the drug-loaded MΦs are infused into an animal, the drug is released at the disease site. Finally, we also review the current status of MΦ biodistribution and survival after transplantation into an animal. The combination of these recent advances opens the way for improved MΦ cell therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5064880PMC
http://dx.doi.org/10.1016/j.jconrel.2016.07.018DOI Listing

Publication Analysis

Top Keywords

cell therapies
8
mΦs
6
5
macrophage-based cell
4
therapies long
4
long winding
4
winding road
4
road quest
4
quest better
4
better medicines
4

Similar Publications

Treatment options for patients with relapsed or refractory (R/R) anaplastic large cell lymphoma (ALCL) have increased in the era of targeted therapies such as brentuximab vedotin (BV) and Anaplastic Lymphoma Kinase (ALK) inhibitors. However, there is no standard treatment and limited published data evaluating their use. The goal of this retrospective study is to describe current real-world treatment and outcomes of pediatric, adolescent, and young adult patients with R/R ALK-positive ALCL.

View Article and Find Full Text PDF

Cell-Based Therapies in GI Cancers: Current Landscape and Future Directions.

Am Soc Clin Oncol Educ Book

January 2025

Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan.

Cell-based therapies have become integral to the routine clinical management of hematologic malignancies. Tumor-infiltrating lymphocyte (TIL) therapy has demonstrated efficacy in immunogenic solid tumors, such as melanoma. However, in the GI field, evidence supporting the clinical success of cell-based therapies is still awaited.

View Article and Find Full Text PDF

Noncanonical role of Golgi-associated macrophage TAZ in chronic inflammation and tumorigenesis.

Sci Adv

January 2025

Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea.

Until now, Hippo pathway-mediated nucleocytoplasmic translocation has been considered the primary mechanism by which yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) transcriptional coactivators regulate cell proliferation and differentiation via transcriptional enhanced associate domain (TEAD)-mediated target gene expression. In this study, however, we found that TAZ, but not YAP, is associated with the Golgi apparatus in macrophages activated via Toll-like receptor ligands during the resolution phase of inflammation. Golgi-associated TAZ enhanced vesicle trafficking and secretion of proinflammatory cytokines in M1 macrophage independent of the Hippo pathway.

View Article and Find Full Text PDF

Long-term, immunosuppression-free allograft survival has been induced in human and nonhuman primate (NHP) kidney recipients after nonmyeloablative conditioning and donor bone marrow transplantation (DBMT), resulting in transient mixed hematopoietic chimerism. However, the same strategy has consistently failed in NHP heart transplant recipients. Here, we investigated whether long-term heart allograft survival could be achieved by cotransplanting kidneys from the same donor.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR)-T cell therapies have revolutionized the landscape of cancer treatment, in particular in the context of hematologic malignancies. However, for solid tumors that lack tumor-specific antigens, CAR-T cells can infiltrate and attack nonmalignant tissues expressing the CAR target antigen, leading to on-target, off-tumor toxicity. Severe on-target, off-tumor toxicities have been observed in clinical trials of CAR-T therapy for solid tumors, highlighting the need to address this issue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!