A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biomechanical analysis of different osteosyntheses and the combination with bone substitute in tibial head depression fractures. | LitMetric

Background: Tibial head depression fractures demand a high level of fracture stabilization to prevent a secondary loss of reduction after surgery. Elderly individuals are at an increased risk of developing these fractures, and biomechanical investigations of the fractures are rare. Therefore, the aim of this study was to systematically analyze different types of osteosyntheses in combination with two commonly used bone substitutes.

Methods: Lateral tibial head depression fractures were created in synthetic bones. After reduction, the fractures were stabilized with eight different treatment options of osteosynthesis alone or in combination with a bone substitute. Two screws, 4 screws and a lateral buttress plate were investigated. As a bone substitute, two common clinically used calcium phosphate cements, Norian® Drillable and ChronOS™ Inject, were applied. Displacement of the articular fracture fragment (mm) during cyclic loading, stiffness (N/mm) and maximum load (N) in Load-to-Failure tests were measured.

Results: The three different osteosyntheses (Group 1: 2 screws, group 2: 4 screws, group 3: plate) alone revealed a significantly higher displacement compared to the control group (Group 7: ChronOS™ Inject only) (Group 1, 7 [p < 0.01]; group 2, 7 [p = 0.04]; group 3, 7 [p < 0.01]). However, the osteosyntheses in combination with bone substitute exhibited no differences in displacement compared to the control group. The buttress plate demonstrated a higher normalized maximum load than the 2 and 4 screw osteosynthesis. Comparing the two different bone substitutes to each other, ChronOS™ inject had a significantly higher stiffness and lower displacement than Norian® Drillable.

Conclusions: The highest biomechanical stability under maximal loading was provided by a buttress plate osteosynthesis. A bone substitute, such as the biomechanically favorable ChronOS™ Inject, is essential to reduce the displacement under lower loading.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4946189PMC
http://dx.doi.org/10.1186/s12891-016-1118-4DOI Listing

Publication Analysis

Top Keywords

bone substitute
12
tibial head
12
head depression
12
depression fractures
12
osteosyntheses combination
8
combination bone
8
chronos™ inject
8
group screws
8
screws group
8
fractures
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!