Claudins (CLDNs) are a 27-member family of tetra-transmembrane proteins that have pivotal roles in maintaining cellular polarity and sealing the spaces between adjacent cells. Deregulation of their functions is often associated with pathological conditions, including carcinogenesis and inflammation. Some CLDNs are co-receptors for hepatitis C virus. Because CLDN-driven regulation of intercellular seals might be manipulated to enhance drug absorption, CLDNs are attractive targets for drug development. Monoclonal antibodies recognizing the extracellular domain of CLDNs are the first choice for therapeutics, but their development has been delayed. Here, we overview recent advances in the creation of anti-CLDN antibodies and discuss CLDNs as drug development targets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.drudis.2016.07.004 | DOI Listing |
Aten Primaria
January 2025
Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, España; Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Barcelona, España; Institut Català de la Salut, Barcelona, España.
Objective: To characterise patients with heart failure (HF) in Primary Health Care (PHC) and describe their socio-demographic and clinical characteristics and pharmacological treatment.
Design: Descriptive cohort study. SITE: Information System for the Development of Research in Primary Care (SIDIAP), which captures information from the electronic health records of PHC of the Catalan Institute of Health (approximately 80% of the Catalan population).
J Chem Inf Model
January 2025
Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People's Republic of China.
In recent decades, covalent inhibitors have emerged as a promising strategy for therapeutic development, leveraging their unique mechanism of forming covalent bonds with target proteins. This approach offers advantages such as prolonged drug efficacy, precise targeting, and the potential to overcome resistance. However, the inherent reactivity of covalent compounds presents significant challenges, leading to off-target effects and toxicities.
View Article and Find Full Text PDFAnal Chem
January 2025
Research Unit of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China.
Although cathepsin S is transported from the spleen to the liver, where it cleaves collagen XVIII to produce endostatin and plays a critical role in the onset of early liver fibrosis, the relationship between liver fibrosis and spleen function remains underexplored. Given the roles of phosphorylation in disease, understanding its regulatory mechanism in early liver fibrosis is crucial. Despite advances in mass spectrometry enhancing phosphoproteomics, its application is limited by small clinical samples and subtle protein changes.
View Article and Find Full Text PDFJCO Precis Oncol
January 2025
Translational Research Support Office, National Cancer Center Hospital East, Chiba, Japan.
Purpose: Human epidermal growth factor receptor 2 (HER2)-targeted therapies have shown promise in treating -amplified metastatic colorectal cancer (mCRC). Identifying optimal biomarkers for treatment decisions remains challenging. This study explores the potential of artificial intelligence (AI) in predicting treatment responses to trastuzumab plus pertuzumab (TP) in patients with -amplified mCRC from the phase II TRIUMPH trial.
View Article and Find Full Text PDFPLoS One
January 2025
Prince Mohammad Bin Fahd University, Al Khobar, Saudi Arabia.
Topological indices are crucial tools for predicting the physicochemical and biological features of different drugs. They are numerical values obtained from the structure of chemical molecules. These indices, particularly the degree-based TIs are a useful tools for evaluating the connection between a compound's structure and its attributes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!