A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

4-Methylzymosterone and Other Intermediates of Sterol Biosynthesis from Yeast Mutants Engineered in the ERG27 Gene Encoding 3-Ketosteroid Reductase. | LitMetric

Studies in the post-squalene section of sterol biosynthesis may be hampered by the poor availability of authentic standards. The present study used different yeast strains engineered in 3-ketosteroid reductase (Erg27p) to obtain radioactive and non-radioactive intermediates of sterol biosynthesis hardly or not available commercially. Non-radioactive 3-keto 4-monomethyl sterones were purified from non-saponifiable lipids extracted from cells bearing point-mutated 3-ketosteroid reductase. Two strategies were adopted to prepare the radioactive compounds: (1) incubation of cell homogenates of an ERG27-deletant strain with radioactive lanosterol, (2) incubation of growing cells of a strain expressing point-mutated 3-ketosteroid reductase with radioactive acetate. Chemical reduction of both radioactive and non-radioactive 3-keto sterones gave the physiological 3-β OH sterols, as well as the non-physiological 3-α OH isomers. This combined biological and chemical preparation procedure provided otherwise unavailable or hardly available 4-mono-methyl intermediates of sterol biosynthesis, paving the way for research into their roles in physiological and pathological conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11745-016-4173-6DOI Listing

Publication Analysis

Top Keywords

sterol biosynthesis
16
3-ketosteroid reductase
16
intermediates sterol
12
radioactive non-radioactive
8
non-radioactive 3-keto
8
point-mutated 3-ketosteroid
8
radioactive
5
4-methylzymosterone intermediates
4
sterol
4
biosynthesis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!