Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Medical diagnostics is often a multi-attribute problem, necessitating sophisticated tools for analyzing high-dimensional biomedical data. Mining this data often results in two crucial bottlenecks: 1) high dimensionality of features used to represent rich biological data and 2) small amounts of labelled training data due to the expense of consulting highly specific medical expertise necessary to assess each study. Currently, no approach that we are aware of has attempted to use active learning in the context of dimensionality reduction approaches for improving the construction of low dimensional representations. We present our novel methodology, AdDReSS (Adaptive Dimensionality Reduction with Semi-Supervision), to demonstrate that fewer labeled instances identified via AL in embedding space are needed for creating a more discriminative embedding representation compared to randomly selected instances. We tested our methodology on a wide variety of domains ranging from prostate gene expression, ovarian proteomic spectra, brain magnetic resonance imaging, and breast histopathology. Across these various high dimensional biomedical datasets with 100+ observations each and all parameters considered, the median classification accuracy across all experiments showed AdDReSS (88.7%) to outperform SSAGE, a SSDR method using random sampling (85.5%), and Graph Embedding (81.5%). Furthermore, we found that embeddings generated via AdDReSS achieved a mean 35.95% improvement in Raghavan efficiency, a measure of learning rate, over SSAGE. Our results demonstrate the value of AdDReSS to provide low dimensional representations of high dimensional biomedical data while achieving higher classification rates with fewer labelled examples as compared to without active learning.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4946789 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0159088 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!