We demonstrate up to ∼630-fold enhancement of the photocurrent from a porphyrin monolayer on a plasmonic Ag-array electrode showing plasmon absorption in the Q-band region relative to that on a planar Ag electrode. The photocurrent obtained by the Q-band excitation in the plasmonic electrodes even exceeded that obtained by the Soret-band excitation in a normal, nonplasmonic electrode.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6nr03158gDOI Listing

Publication Analysis

Top Keywords

extraordinary enhancement
4
enhancement porphyrin
4
porphyrin photocurrent
4
photocurrent utilizing
4
utilizing plasmonic
4
plasmonic silver
4
silver arrays
4
arrays demonstrate
4
demonstrate ∼630-fold
4
∼630-fold enhancement
4

Similar Publications

Enhancing battery longevity by regulating the solvation chemistry of organic iodide.

Angew Chem Int Ed Engl

December 2024

Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.

For rechargeable zinc-iodine batteries, the low electrical conductivity of iodine and the easy dissolution of polyiodide in the electrolyte need to be carefully managed to ensure efficient operation. Herein, we introduce an organic iodized salt, formamidinium iodide (CHNI), to modulate the solvation structure of iodide ion, aimed to improve the reaction kinetics of iodine for reversible redox conversion. The participation of formamidinium ion (FA) into solvation structure leads to the formation of the favorable FAIZn(HO) complex, facilitating easier desolvation for redox conversion with iodine.

View Article and Find Full Text PDF

Room-Temperature CsPbI-Quantum-Dot Reinforced Solid-State Li-Polymer Battery.

Small

January 2025

Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.

A novel polymer electrolyte based on CsPbI quantum dots (QDs) reinforced polyacrylonitrile (PAN), named as PIL, is exploited to address the low room-temperature (RT) ion conductivity and poor interfacial compatibility of polymer solid-state electrolytes. After optimizing the content of CsPbI QDs, RT ion conductivity of PIL largely increased from 0.077 to 0.

View Article and Find Full Text PDF

Light induced release of cisplatin from Pt(IV) prodrugs is a promising tool for precise spatiotemporal control over the antiproliferative activity of Pt-based chemotherapeutic drugs. A combination of light-controlled chemotherapy (PACT) and photodynamic therapy (PDT) in one molecule has the potential to overcome crucial drawbacks of both Pt-based chemotherapy and PDT via a synergetic effect. Herein we report green-light-activated Pt(IV) prodrug GreenPt with BODIPY-based photosentitizer in the axial position with an incredible high light response and singlet oxygen generation ability.

View Article and Find Full Text PDF

This perspective begins with an overview of the major impact that the dendron, dendrimer, and dendritic state (DDDS) discovery has made on traditional polymer science. The entire DDDS technology is underpinned by an unprecedented new polymerization strategy referred to as step-growth, amplification-controlled polymerization (SGACP). This new SGACP paradigm allows for routine polymerization of common monomers and organic materials into precise monodispersed, dendritic macromolecules (i.

View Article and Find Full Text PDF

The quest for cleaner and sustainable energy sources is crucial, considering the current scenario of a steep rise in energy consumption and the fuel crisis, exacerbated by diminishing fossil fuel reserves and rising pollutants. In particular, the bioaccumulation of hazardous substances like trivalent chromium has not only disrupted the fragile equilibrium of the ecological system but also poses significant health hazards to humans. Microalgae emerged as a promising solution for achieving sustainability due to their ability to remediate contaminants and produce greener alternatives such as biofuels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!