Further correction for 'Low bandgap semiconducting polymers for polymeric photovoltaics' by Chang Liu et al., Chem. Soc. Rev., 2016, DOI: 10.1039/c5cs00650c.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6cs90071b | DOI Listing |
Environ Res
January 2025
College of Energy and Electrical Engineering, Qinghai University, Xining, Qinghai, 810016, China; CHN Energy group Qinghai Electric Power Co., LTD, Xining, Qinghai, 810008, China. Electronic address:
This research using the first-principles theory introduces Pd- and Pt-functionalized WSe monolayers as promising materials for detecting three critical gases (H, CO, and CH), to evaluate the health of Li-ion battery (LIBs). Various sites on the pristine WSe monolayer are considered for the functionalization with Pd and Pt atoms. The adsorption performances of the determined Pd- and Pt-WSe monolayers upon the three gases are analyzed by the comparative highlight of the adsorption energy, bonding behavior and electron transfer.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
Conjugated polymers have attracted extensive attention as semiconducting materials in wearable and flexible electronics. In this study, we utilize atom-economical Knoevenagel reaction to construct two conjugated polymers, PTDPP-CNTT and PFDPP-CNTT, based on dialdehyde-thiophene/furan-flanked diketopyrrolopyrrole (DPP) and 2,2'-(thieno[3,2-b]thiophene-2,5-diyl)diacetonitrile (CNTT). The resulting polymers exhibited suitable highest occupied molecular orbital/lowest unoccupied molecular orbital (HOMO/LUMO) energy levels, small bandgaps, and broad UV-vis-NIR absorptions (≈400-1000 nm), endowing them with photothermal and balanced ambipolar semiconducting properties with hole and electron mobilities over 10 cmVs.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063000, China.
The bandgap is a critical factor influencing the energy density of batteries and a key physical quantity that determines the semiconducting behavior of materials. To further improve the prediction accuracy of the bandgap in silicon oxide lithium-ion battery materials, a boosting machine learning model was established to predict the material's bandgap. The optimal model, AdaBoost, was selected, and the SHapley Additive exPlanations (SHAP) method was used to quantitatively analyze the importance of different input features in relation to the model's prediction accuracy.
View Article and Find Full Text PDFDiscov Nano
January 2025
Physics Department/Faculty of Science, Sana'a University, Sana'a, Yemen.
Acc Chem Res
January 2025
Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.
ConspectusOrganic mixed ionic electronic conductors (OMIECs) represent an exciting and emerging class of materials that have recently revitalized the field of organic semiconductors. OMIECs are particularly attractive because they allow both ionic and electronic transport while retaining the inherent benefits of organic semiconducting materials such as mechanical conformability and biocompatibility. These combined properties make the OMIECs ideal for applications in bioelectronics, energy storage, neuromorphic computing, and electrochemical transistors for sensing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!