Further correction: Low bandgap semiconducting polymers for polymeric photovoltaics.

Chem Soc Rev

Center for Polymers and Organic Solids, University of California, Santa Barbara, CA 931006, USA.

Published: August 2016

Further correction for 'Low bandgap semiconducting polymers for polymeric photovoltaics' by Chang Liu et al., Chem. Soc. Rev., 2016, DOI: 10.1039/c5cs00650c.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6cs90071bDOI Listing

Publication Analysis

Top Keywords

bandgap semiconducting
8
semiconducting polymers
8
polymers polymeric
8
correction low
4
low bandgap
4
polymeric photovoltaics
4
photovoltaics correction
4
correction 'low
4
'low bandgap
4
polymeric photovoltaics'
4

Similar Publications

Noble metal (Pd, Pt)-functionalized WSe monolayer for adsorbing and sensing thermal runaway gases in LIBs: a first-principles investigation.

Environ Res

January 2025

College of Energy and Electrical Engineering, Qinghai University, Xining, Qinghai, 810016, China; CHN Energy group Qinghai Electric Power Co., LTD, Xining, Qinghai, 810008, China. Electronic address:

This research using the first-principles theory introduces Pd- and Pt-functionalized WSe monolayers as promising materials for detecting three critical gases (H, CO, and CH), to evaluate the health of Li-ion battery (LIBs). Various sites on the pristine WSe monolayer are considered for the functionalization with Pd and Pt atoms. The adsorption performances of the determined Pd- and Pt-WSe monolayers upon the three gases are analyzed by the comparative highlight of the adsorption energy, bonding behavior and electron transfer.

View Article and Find Full Text PDF

Synthesis and Optoelectronic Characterizations of Conjugated Polymers Based on Diketopyrrolopyrrole and 2,2'-(thieno[3,2-b]thiophene-2,5-diyl)diacetonitrile Via Knoevenagel Condensation.

Macromol Rapid Commun

January 2025

State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.

Conjugated polymers have attracted extensive attention as semiconducting materials in wearable and flexible electronics. In this study, we utilize atom-economical Knoevenagel reaction to construct two conjugated polymers, PTDPP-CNTT and PFDPP-CNTT, based on dialdehyde-thiophene/furan-flanked diketopyrrolopyrrole (DPP) and 2,2'-(thieno[3,2-b]thiophene-2,5-diyl)diacetonitrile (CNTT). The resulting polymers exhibited suitable highest occupied molecular orbital/lowest unoccupied molecular orbital (HOMO/LUMO) energy levels, small bandgaps, and broad UV-vis-NIR absorptions (≈400-1000 nm), endowing them with photothermal and balanced ambipolar semiconducting properties with hole and electron mobilities over 10 cmVs.

View Article and Find Full Text PDF

The bandgap is a critical factor influencing the energy density of batteries and a key physical quantity that determines the semiconducting behavior of materials. To further improve the prediction accuracy of the bandgap in silicon oxide lithium-ion battery materials, a boosting machine learning model was established to predict the material's bandgap. The optimal model, AdaBoost, was selected, and the SHapley Additive exPlanations (SHAP) method was used to quantitatively analyze the importance of different input features in relation to the model's prediction accuracy.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how varying concentrations of Zn ions affect the optical properties of BaNiZnFeO ferrites, showcasing the ability to tune the band gap through Zn doping.
  • X-ray diffraction (XRD) confirmed that the material maintained a single-phase structure and exhibited changes in grain size and lattice parameters with increased Zn content.
  • UV-visible spectroscopy demonstrated that the band gap and electrical properties improved with higher Zn concentrations, indicating potential uses in optoelectronics and energy storage applications.
View Article and Find Full Text PDF

Organic Iono-Optoelectronics: From Electrochromics to Artificial Retina.

Acc Chem Res

January 2025

Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.

ConspectusOrganic mixed ionic electronic conductors (OMIECs) represent an exciting and emerging class of materials that have recently revitalized the field of organic semiconductors. OMIECs are particularly attractive because they allow both ionic and electronic transport while retaining the inherent benefits of organic semiconducting materials such as mechanical conformability and biocompatibility. These combined properties make the OMIECs ideal for applications in bioelectronics, energy storage, neuromorphic computing, and electrochemical transistors for sensing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!