Three-dimensional branched TiO2 architectures (3D BTA) with controllable morphologies were synthesized via a facile template-free one-pot solvothermal route. The volume ratio of deionized water (DI water) and diethylene glycol in solvothermal process is key to the formation of 3D BTA assembled by nanowire-coated TiO2 dendrites, which combines the advantages of 3D hierarchical structure and 1D nanoscale building blocks. Benefiting from such unique structural features, the BTA in full bloom achieved significantly increased specific surface areas and shortened Li(+) ion/electrons diffusion pathway. The lithium-ion batteries based on BTA in full bloom exhibited remarkably enhanced reversible specific capacity and rate performance, attributing to the high contact area with the electrolyte and the short solid state diffusion pathway for Li(+) ion/electrons promoting lithium insertion and extraction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b05559DOI Listing

Publication Analysis

Top Keywords

three-dimensional branched
8
branched tio2
8
tio2 architectures
8
lithium-ion batteries
8
bta full
8
full bloom
8
li+ ion/electrons
8
diffusion pathway
8
architectures controllable
4
controllable bloom
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!