Thermoelectric efficiency of molecular junctions.

J Phys Condens Matter

CNR-SPIN and Physics Department 'Ettore Pancini', Universita' degli Studi di Napoli 'Federico II', Complesso Universitario Monte S. Angelo, Via Cintia, I-80126 Napoli, Italy.

Published: September 2016

Focus of the review is on experimental set-ups and theoretical proposals aimed to enhance thermoelectric performances of molecular junctions. In addition to charge conductance, the thermoelectric parameter commonly measured in these systems is the thermopower, which is typically rather low. We review recent experimental outcomes relative to several junction configurations used to optimize the thermopower. On the other hand, theoretical calculations provide estimations of all the thermoelectric parameters in the linear and non-linear regime, in particular of the thermoelectric figure of merit and efficiency, completing our knowledge of molecular thermoelectricity. For this reason, the review will mainly focus on theoretical studies analyzing the role of not only electronic, but also of the vibrational degrees of freedom. Theoretical results about thermoelectric phenomena in the coherent regime are reviewed focusing on interference effects which play a significant role in enhancing the figure of merit. Moreover, we review theoretical studies including the effects of molecular many-body interactions, such as electron-vibration couplings, which typically tend to reduce the efficiency. Since a fine tuning of many parameters and coupling strengths is required to optimize the thermoelectric conversion in molecular junctions, new theoretically proposed set-ups are discussed in the conclusions.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/28/37/373001DOI Listing

Publication Analysis

Top Keywords

molecular junctions
12
review experimental
8
figure merit
8
theoretical studies
8
thermoelectric
7
molecular
5
theoretical
5
thermoelectric efficiency
4
efficiency molecular
4
junctions focus
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!