It was previously reported that functional glycine receptors were expressed in neonatal prefrontal cortex; however, the glycine-releasing cells were unknown. We hypothesized that astrocytes might be a major glycine source, and examined the glycine release properties of astrocytes. We also hypothesized that dopamine (DA) might be a trigger for the astrocytic glycine release, as numerous DA terminals localize in the cortex. We combined two different methods to confirm the glycine release from astrocytes. Firstly, we analyzed the supernatant of astrocytes by amino acid analyzer after DA stimulation, and detect significant glycine peak. Furthermore, we utilized a patch-clamp biosensor method to confirm the glycine release from astrocytes by using GlyRα1 and Glyβ-expressing HEK293T cells, and detected significant glycine-evoked current upon DA stimulation. Thus, we clearly demonstrated that DA induces glycine release from astrocytes. Surprisingly, DA caused a functional reversal of astrocytic glycine transporter 1, an astrocytic type of glycine transporter, causing astrocytes to release glycine. Hence, astrocytes transduce pre-synaptic DA signals to glycine signals through a reversal of astrocytic glycine transporter 1 to regulate neuronal excitability. Cover Image for this issue: doi: 10.1111/jnc.13785.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jnc.13741DOI Listing

Publication Analysis

Top Keywords

glycine release
24
release astrocytes
16
glycine
14
astrocytic glycine
12
glycine transporter
12
astrocytes
9
functional reversal
8
confirm glycine
8
reversal astrocytic
8
release
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!