Piezoelectric Electromechanical Coupling in Nanomechanical Resonators with a Two-Dimensional Electron Gas.

Phys Rev Lett

Rzhanov Institute of Semiconductor Physics 13, Lavrentyev Avenue, Novosibirsk 630090, Russia, and Novosibirsk State University 2, Pirogov Street, Novosibirsk 630090, Russia.

Published: July 2016

AI Article Synopsis

  • The study explores how a two-dimensional electron gas reacts to vibrations in a nanomechanical cantilever.
  • Experimental results show that vibrations in different orientations affect conductivity near the cantilever's base in opposite ways, implying a piezoelectric effect in the coupling.
  • A developed model reveals that the key factor in conductivity changes is the quick variation in mechanical stress at the suspended-nonsuspended boundary, not the stress level itself.

Article Abstract

The electrical response of a two-dimensional electron gas to vibrations of a nanomechanical cantilever containing it is studied. Vibrations of perpendicularly oriented cantilevers are experimentally shown to oppositely change the conductivity near their bases. This indicates the piezoelectric nature of electromechanical coupling. A physical model is developed, which quantitatively explains the experiment. It shows that the main origin of the conductivity change is a rapid change in the mechanical stress on the boundary between suspended and nonsuspended areas, rather than the stress itself.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.117.017702DOI Listing

Publication Analysis

Top Keywords

electromechanical coupling
8
two-dimensional electron
8
electron gas
8
piezoelectric electromechanical
4
coupling nanomechanical
4
nanomechanical resonators
4
resonators two-dimensional
4
gas electrical
4
electrical response
4
response two-dimensional
4

Similar Publications

An important technical task is to develop methods for recording the phase transitions of water to ice. At present, many sensors based on various types of acoustic waves are suggested for solving this challenge. This paper focuses on the theoretical and experimental study of the effect of water-to-ice phase transition on the properties of Lamb and quasi shear horizontal (QSH) acoustic waves of a higher order propagating in different directions in piezoelectric plates with strong anisotropy.

View Article and Find Full Text PDF

As a category of polymeric materials, soft dielectrics, such as most elastomers and rubber-like materials, have shown great potential for extensive applications in various fields. Owing to their intriguing electromechanical coupling behaviors, the morphological instabilities in soft dielectrics have been an active research field in recent years. In this work, the recent progress in experimental and theoretical research on their electromechanical morphological instabilities is reviewed, especially regarding the theoretical aspect.

View Article and Find Full Text PDF

Boosting the Actuation Performance of a Dynamic Supramolecular Polyurethane-Urea Elastomer via Kinetic Control.

ACS Appl Mater Interfaces

January 2025

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.

The ongoing soft actuation has accentuated the demand for dielectric elastomers (DEs) capable of large deformation to replace the traditional rigid mechanical apparatus. However, the low actuation strain of DEs considerably limits their practical applications. This work developed high-performance polyurethane-urea (PUU) elastomers featuring large actuation strains utilizing an approach of kinetic control over the microphase separation structure during the fabrication process.

View Article and Find Full Text PDF

Reinvestigating atomic ordering in KNaNbOand its impact on ferroelectric properties.

J Phys Condens Matter

January 2025

Physics, Indian Institute of Technology Banaras Hindu University, Indian Institute of Technology (Banaras Hindu University), Department of Physics, Varanasi, Varanasi, Uttar Pradesh, 221005, INDIA.

In the present work, we reinvestigate the atomic ordering of a Pb-free Morphotropic Phase Boundary (MPB) composition viz., K0.5Na0.

View Article and Find Full Text PDF

Slide-Ring Structured Stress-Electric Coupling Hydrogel Microspheres for Low-Loss Transduction Between Tissues.

Adv Mater

January 2025

Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China.

High transductive loss at tissue injury sites impedes repair. The high dissipation characteristics in the electromechanical conversion of piezoelectric biomaterials pose a challenge. Therefore, supramolecular engineering and microfluidic technology is utilized to introduce slide-ring polyrotaxane and conductive polypyrrole to construct stress-electric coupling hydrogel microspheres.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!