Comparison of dosimetric parameters and toxicity in esophageal cancer patients undergoing 3D conformal radiotherapy or VMAT.

Strahlenther Onkol

Department of Radiation Oncology, Klinikum rechts der Isar, TU München, Ismaninger Str. 22, 81675, München, Germany.

Published: October 2016

Purpose: Volumetric-modulated arc therapy (VMAT) achieves high conformity to the planned target volume (PTV) and good sparing of organs at risk (OAR). This study compares dosimetric parameters and toxicity in esophageal cancer (EC) patients treated with VMAT and 3D conformal radiotherapy (3D-CRT).

Materials And Methods: Between 2007 and 2014, 17 SC patients received neoadjuvant chemoradiation (CRT) with VMAT. Dose-volume histograms and toxicity were compared between these patients and 20 treated with 3D-CRT. All patients were irradiated with a total dose of 45 Gy. All VMAT patients received simultaneous chemotherapy with cisplatin and 5‑fluorouracil (5-FU) in treatment weeks 1 and 5. Of 20 patients treated with 3D-CRT, 13 (65 %) also received CRT with cisplatin and 5‑FU, whereas 6 patients (30 %) received CRT with weekly oxaliplatin and cetuximab, and a continuous infusion of 5‑FU (OE-7).

Results: There were no differences in baseline characteristics between the treatment groups. For the lungs, VMAT was associated with a higher V5 (median 90.1 % vs. 79.7 %; p = 0.013) and V10 (68.2 % vs. 56.6 %; p = 0.014), but with a lower V30 (median 6.6 % vs. 11.0 %; p = 0.030). Regarding heart parameters, VMAT was associated with a higher V5 (median 100.0 % vs. 91.0 %; p = 0.043), V10 (92.0 % vs. 79.2 %; p = 0.047), and Dmax (47.5 Gy vs. 46.3 Gy; p = 0.003), but with a lower median dose (18.7 Gy vs. 30.0 Gy; p = 0.026) and V30 (17.7 % vs. 50.4 %; p = 0.015). Complete resection was achieved in 16 VMAT and 19 3D-CRT patients. Due to systemic progression, 2 patients did not undergo surgery. The most frequent postoperative complication was anastomosis insufficiency, occurring in 1 VMAT (6.7 %) and 5 3D-CRT patients (27.8 %; p = 0.180). Postoperative pneumonia was seen in 2 patients of each group (p = 1.000). There was no significant difference in 3‑year overall (65 % VMAT vs. 45 % 3D-CRT; p = 0.493) or 3‑year progression-free survival (53 % VMAT vs. 35 % 3D-CRT; p = 0.453).

Conclusion: Although dosimetric differences in lung and heart exposure were observed, no clinically relevant impact was detected in either patient group. In a real-life patient cohort, VMAT enables reduction of lung and heart V30 compared to 3D-CRT, which may contribute to reduced toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00066-016-1020-xDOI Listing

Publication Analysis

Top Keywords

p =
12
vmat
10
dosimetric parameters
8
parameters toxicity
8
toxicity esophageal
8
esophageal cancer
8
patients
8
cancer patients
8
3d conformal radiotherapy
8
patients received
8

Similar Publications

Poly(amic acid)-Polyimide Copolymer Interfacial Layers for Self-Powered CHNHPbI Photovoltaic Photodiodes.

Polymers (Basel)

January 2025

Department of Electrical and Biological Physics, Kwangwoon University, Wolgye-Dong, Seoul 01897, Republic of Korea.

Hybrid organohalide perovskites have received considerable attention due to their exceptional photovoltaic (PV) conversion efficiencies in optoelectronic devices. In this study, we report the development of a highly sensitive, self-powered perovskite-based photovoltaic photodiode (PVPD) fabricated by incorporating a poly(amic acid)-polyimide (PAA-PI) copolymer as an interfacial layer between a methylammonium lead iodide (CHNHPbI, MAPbI) perovskite light-absorbing layer and a poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT: PSS) hole injection layer. The PAA-PI interfacial layer effectively suppresses carrier recombination at the interfaces, resulting in a high power conversion efficiency () of 11.

View Article and Find Full Text PDF

Characterization and In Vitro Digestion Kinetics of Purified Pulse Starches: Implications on Bread Formulation.

Foods

January 2025

Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN 47907, USA.

This study investigated the contribution of pulse starches (PSs) to the slowly digestible starch (SDS) properties observed in pulses. Purified pulse starches from 17 commonly consumed pulses were examined, focusing on their digestion kinetics using a pancreatic alpha-amylase (PAA) and rat intestinal acetone powder (RIAP) mixture. Chickpea starch, exhibiting a slow digestibility profile, was incorporated as an ingredient to confer slow digestibility to refined wheat flour bread.

View Article and Find Full Text PDF

Due to an increased demand for natural food additives, clove oil was assessed as a natural alternative to chemical disinfectants in produce washing. This study assessed the antimicrobial activity of 5 and 10% (/) clove oil-amended wash liquid (CO) using a zone of inhibition (ZIB) test and determined the time required to completely inactivate pathogenic bacteria using bacterial death curve analysis. A washing experiment was used to evaluate CO's ability to inhibit bacterial growth on inoculated RTE spinach and in the wash water.

View Article and Find Full Text PDF

Development of a Cationic Polymeric Micellar Structure with Endosomal Escape Capability Enables Enhanced Intramuscular Transfection of mRNA-LNPs.

Vaccines (Basel)

December 2024

Shenzhen Neocurna Biotechnology Corporation, 12/F, Block B, Building 1, Yinxingzhijie Phase II, Longhua District, Shenzhen 518100, China.

The endosomal escape of lipid nanoparticles (LNPs) is crucial for efficient mRNA-based therapeutics. Here, we present a cationic polymeric micelle (cPM) as a safe and potent co-delivery system with enhanced endosomal escape capabilities. We synthesized a cationic and ampholytic di-block copolymer, poly (poly (ethylene glycol) methacrylate--hexyl methacrylate)--poly(butyl methacrylate--dimethylaminoethyl methacrylate--propyl acrylate) (p(PEGMA--HMA)--p(BMA--DMAEMA--PAA)), via reversible addition-fragmentation chain transfer polymerization.

View Article and Find Full Text PDF

Understanding the adsorption features of polymer microgels with different chemical compositions and structures is crucial in studying the mechanisms of respective emulsion stabilization. Specifically, the use of stimuli-responsive particles can introduce new properties and broaden the application range of such complex systems. Recently, we demonstrated that emulsions stabilized by microgels composed of interpenetrating networks (IPNs) of poly-N-isopropylacrylamide (PNIPAM) and polyacrylic acid (PAA) exhibit higher colloidal stability upon heating compared to PNIPAM homopolymer and other relevant PNIPAM-based copolymer counterparts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!