Although 90%-100% of mouse oocytes can be fertilized in vitro with capacitated spermatozoa within 1 h after insemination, oocytes within the oviduct are fertilized one by one over a period of several hours. In vitro experiments showed that both acrosome-intact and acrosome-reacted spermatozoa entered the cumulus oophorus, but that acrosome-reacted spermatozoa reached the surface of oocytes more readily than acrosome-intact spermatozoa. During the period of fertilization within the oviduct, acrosome-reacted spermatozoa were seen throughout the isthmus, but with higher incidence in the upper than in the mid- and lower segments of the isthmus. Very few spermatozoa were present in the ampulla, and almost all were acrosome reacted. Although the cumulus oophorus and zona pellucida are known to be able to induce or facilitate the acrosome reaction of spermatozoa, this picture makes it likely that almost all fertilizing mouse spermatozoa within the oviduct begin to react before ascending from the isthmus to the ampulla. We witnessed a reacted spermatozoon that stayed on the zona pellucida of a fertilized oocyte for a while; it then moved out of the cumulus before reaching the zona pellucida of the nearby unfertilized oocyte. We noted that only a few spermatozoa migrate from the isthmus to the ampulla during the progression of fertilization, and this must be one of the reasons why we do not see many spermatozoa swarming around a single oocyte during in vivo fertilization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1095/biolreprod.116.140400 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Graduate School of Life and Environmental Sciences, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 400-8510 Kofu, Japan.
Background: Sperm represent a heterogeneous population crucial for male reproductive success. Additionally, sperm undergo dynamic changes during maturation and capacitation. Despite these well-established processes, the complex nature of sperm heterogeneity and membrane dynamics remains elusive.
View Article and Find Full Text PDFReprod Toxicol
December 2024
Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea. Electronic address:
Reprod Domest Anim
October 2024
Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, Karnataka, India.
Premature acrosomal exocytosis in cryopreserved semen is one of the reasons attributed to low fertility among livestock. In the present study, we attempted to enhance the cryopreserved semen quality by selective removal of acrosome-reacted spermatozoa using FITC-PNA conjugated iron magnetic nanoparticles (MNPs). Further, the effect of nano purification on other sperm functional attributes was also assessed.
View Article and Find Full Text PDFCryobiology
December 2024
Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia.
Reprod Domest Anim
August 2024
College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India.
In vitro capacitation allows for a greater understanding of the mechanisms underlying fertilization and the development of improved reproductive techniques for improving fertility rates in porcine. Tyrodes albumin lactate pyruvate (TALP) and modified Krebs Ringers Broth (m-KRB) are two medias that are commonly used in research experiments to induce capacitation in boar spermatozoa (Cañón-Beltrán et al., Theriogenology, 198, 2023 and 231; Oberlender et al.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!