The aim of this research was to design a method of immobilization of high-purity human butyrylcholinesterase on the surface of gold nanoparticles preserving the activity of the enzyme. In order to achieve this aim, the method of fractionation and purification of human butyrylcholinesterase from plasma was modified. The synthesis of 15-nm gold nanoparticles was carried out by citrated method. A method of conjugation of the high-purity butyrylcholinesterase with gold nanoparticles was developed. It was found that the Immobilization of butyrylcholinesterase on the surface of gold nanoparticles resulted in a significant (to 23%) increase in the specific activity of the enzyme.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1134/S1607672916030212 | DOI Listing |
ACS Sens
January 2025
The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, P. R. China.
Microneedle (MN) sensors have great promise for food safety detection, but the rapid preparation of MNs for surface-enhanced Raman scattering (SERS) sensors with tunable and homogeneous nanoparticles remains a great challenge. To address this, a SERS sensor of gold nanoparticles@polydopamine@poly(methyl methacrylate) MN (AuNPs@PDA@PMMA-MN) was developed. The extended-Derjaguin-Landau-Verwey-Overbeek theory was applied to calculate the interaction energy between AuNPs and PDA.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, 510665, People's Republic of China.
A simple and rapid colorimetric detection strategy, based on hydrogen bond identification of 6-thioguanine (6-TG) functionalized Au nanoparticles (AuNPs), is proposed for highly selective and sensitive determination of kanamycin (KA). In this strategy, the hydrogen bond interaction between 6-TG and kanamycin induces AuNPs to agglomerate, with a consequent color change of AuNPs from wine red to purple or even blue. The kanamycin concentrations can be quantified by employing UV-vis spectrophotometer.
View Article and Find Full Text PDFNano Lett
January 2025
Institut Charles Sadron, Université de Strasbourg and CNRS, 67034 Strasbourg, France.
Anisometric plasmonic nanoparticles find applications in various fields, from photocatalysis to biosensing. However, exposure to heat or to specific chemical environments can induce their reshaping, leading to loss of function. Understanding this process is therefore relevant both for the fundamental understanding of such nano-objects and for their practical applications.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 557, India.
Chemotherapy is a crucial cancer treatment, but its effectiveness requires precise monitoring of drug concentrations in patients. This study introduces an innovative electrochemical strip sensor design to detect and continuously monitor methotrexate (MTX), a key chemotherapeutic drug. The sensor is crafted through an eco-friendly synthesis process that produces porous reduced graphene oxide (PrGO), which is then integrated with gold nanocomposites and polypyrrole (PPy) to boost the performance of a screen-printed carbon electrode (SPCE).
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemical Engineering, Ataturk University, 25240 Erzurum, Turkey.
The combination of plasmonic metals and MXene, as a new and interesting member of the 2D material class, may provide unique advantages in terms of low cost, versatility, flexibility, and improved activity as an ideal surface-enhanced Raman spectroscopy (SERS) platform. Despite the recent progress, the present studies on the utilization of plasmonic metal/MXene-based SERS systems are quite limited and thereby benefits of the extraordinary properties of this combination cannot be realized. In this study, for the first time, we propose layer-by-layer (LbL) thin films of TiC MXene and gold nanoparticles (AuNPs) as a robust SERS platform (TiC/AuNPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!