Nanoparticles play an important role in the molecular diagnosis, treatment, and monitoring therapeutic outcomes in various diseases. Magnetic nanoparticles are being of great interest due to their unique purposes, especially medicine, in which the application of magnetic nanoparticles is much promising. Magnetic nanoparticles have been actively investigated as the next generation of targeted drug delivery for more than three decades. This article is devoted to study on the magnetic drug targeting technique by particle tracking in the presence of a magnetic field in the carotid artery. The results showed that applying a magnetic field on the secondary branch of the external carotid artery in a pulsating non-Newtonian flow drove nanoparticles inside this sub-branch, while none of them entered that branch in the absence of magnetic field on the internal carotid artery. Wall shear stress distributions showed that high shear stress occurs near the bifurcation region, and its maximum value belongs to the junction of internal carotid artery and external carotid artery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0954411916656663 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!