Objective: Ice massage (IM) is one of the treatment procedures used in hydrotherapy. Though its various physiological/therapeutic effects have been reported, effects of IM of the head and spine on heart rate variability (HRV) have not been studied. Thus, this study evaluated the effects of IM of the head and spine on HRV in healthy volunteers.
Methods: Thirty subjects were randomly divided into 3 sessions: (1) IM, (2) tap water massage (TWM) and (3) prone rest (PR). Heart rate (HR) and HRV were assessed before and after each intervention session.
Results: A significant increase in the mean of the intervals between adjacent QRS complexes or the instantaneous HR (RRI), square root of mean of sum of squares of differences between adjacent normal to normal (NN) intervals (RMSSD), number of interval differences of successive NN intervals greater than 50 milliseconds (NN50), proportion derived by dividing NN50 by total number of NN intervals along with significant reduction in HR after IM session; significant increase in RRI along with significant reduction in HR after TWM, and a significant increase only in RMSSD after PR were observed. However, there was no significant difference between the sessions.
Conclusion: Results of this study suggest that 20 min of IM of the head and spine is effective in reducing HR and improving HRV through vagal dominance in healthy volunteers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S2095-4964(16)60266-2 | DOI Listing |
Sci Data
January 2025
Department of Anatomy and Anthropology, Faculty of Medical & Health Sciences, Tel- Aviv University, Tel-Aviv, 699780, Israel.
This data descriptor presents a comprehensive and replicable dataset and method for calculating the cervical range of motion (CROM) utilizing quaternion-based orientation analysis from Delsys inertial measurement unit (IMU) sensors. This study was conducted with 14 participants and analyzed 504 cervical movements in the Sagittal, Frontal and Horizontal planes. Validated against a Universal Goniometer and tested for reliability and reproducibility.
View Article and Find Full Text PDFJpn J Ophthalmol
January 2025
Department of Neurology, Yokohama Brain and Spine Center, Yokohama, Japan.
Purpose: To assess the effects of modifying head position and of static ocular counter-rolling (OCR) on abduction and adduction in saccadic eye movements using a head-mounted video-oculographic device.
Study Design: A clinical observational study.
Methods: The peak velocities and amplitude gains of visually guided 12° saccades were binocularly measured in 21 healthy volunteers with their heads in the upright vertical (0°) and horizontal (± 90°, bilateral side-lying) postures, and in 6 participants with their head positions bilaterally tilted by 30°.
Alzheimers Dement
December 2024
Interdisciplinary Institute for Neuroscience (UMR 5297), University of Bordeaux, Bordeaux, Gironde, France.
Background: PhospholipaseC γ2 (PLCG2) is known to have direct link with genetic risk factors for Alzheimer's like dementia (AD). PLCG2 has been previously demonstrated to have association with Aß uptake through microglia. And mostly expressed in dentate gyrus (DG) network of hippocampus.
View Article and Find Full Text PDFCurr Sports Med Rep
January 2025
Hoover Fire Department, Hoover, AL.
Equestrian sports are associated with high rates of major injury compared to collision and powered two-wheel sports. Advancements in rider and horse safety equipment and the implementation of comprehensive emergency action planning standards may help mitigate injuries, particularly in regard to the Olympic disciplines of dressage, show jumping, and three-day eventing covered in this review. Personal safety equipment to consider includes helmets, safety and air vests, and horse tack including safety stirrups, acoustic dampeners, and breakaway reins.
View Article and Find Full Text PDFNat Commun
January 2025
University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, UK.
Bone marrow adipose tissue is a distinct adipose subtype comprising more than 10% of fat mass in healthy humans. However, the functions and pathophysiological correlates of this tissue are unclear, and its genetic determinants remain unknown. Here, we use deep learning to measure bone marrow adiposity in the femoral head, total hip, femoral diaphysis, and spine from MRI scans of approximately 47,000 UK Biobank participants, including over 41,000 white and over 6300 non-white participants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!