Basic helix-loop-helix transcription factors (TFs), namely MYC2, MYC3, and MYC4, interact with Jasmonate Zim-domain proteins and are their direct targets. These TFs have been shown to function synergistically to control Arabidopsis growth and development. Our results showed similar MYC2, MYC3, and MYC4 expression patterns during Arabidopsis seed development, which remained relatively high during seed mid-maturation. MYC2, MYC3, and MYC4 acted redundantly in seed size, weight control, and in regulating seed storage protein accumulation. Triple mutants produced the largest seeds and single and double mutants' seeds were much larger than those of wild type. The weight of triple mutants' seeds was significantly higher than that of wild-type seeds, which was accompanied by an increase in seed storage protein contents. Triple mutants' seeds presented a marked decrease in 2S amounts relative to those in wild-type seeds. Liquid chromatography tandem mass spectra sequencing results indicated that both the relative abundance and the peptide number of CRA1 and CRU3 were greatly increased in triple mutants compared to wild type. The expression of 2S1-2S5 decreased and that of CRA1 and CRU3 increased in triple mutants relative to those in wild types during seed development, which might have contributed to the low 2S and high 12S contents in triple mutants. Our results contribute to understanding the function of MYC2, MYC3, and MYC4 on seed development, and provide promising targets for genetic manipulations of protein-producing crops to improve the quantity and quality of seed storage proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2016.07.004DOI Listing

Publication Analysis

Top Keywords

myc2 myc3
20
myc3 myc4
20
seed storage
16
triple mutants
16
storage protein
12
seed development
12
mutants' seeds
12
seed
9
redundantly seed
8
protein accumulation
8

Similar Publications

Plants are exposed to pathogens at specific, yet predictable times of the day-night cycle. In Arabidopsis, the circadian clock influences temporal differences in susceptibility to the necrotrophic pathogen . The jasmonic acid (JA) pathway regulates immune responses against .

View Article and Find Full Text PDF

Untargeted metabolomics and functional analyses reveal that the secondary metabolite quinic acid associates with Angelica sinensis flowering.

BMC Plant Biol

January 2025

Key Laboratory of Chinese Medicinal Resources Recycling Utilization of National Administration of Traditional Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.

Flowering is a critical step in the plant life cycle. Angelica sinensis (Oliv.) Diels is a medicinal crop whose root is a well-known herbal medicine used in Asia.

View Article and Find Full Text PDF

Plants are attacked by various insect herbivores. Upon attack-triggered biosynthesis of the phytohormone jasmonates (JAs), the JA receptor CORONATINE INSENSITIVE 1 recruits the JA-ZIM domain (JAZ) repressors for ubiquitination, releases the MYC-MYB transcription factor (TF) complexes, and enhances glucosinolates (GSs) biosynthesis to promote defense against insects in Arabidopsis. However, the negative regulation of JA-regulated defense remains largely unclear.

View Article and Find Full Text PDF

MYC2 and MYC3 Are Involved in Ethylene-Regulated Hypocotyl Growth as Negative Regulators.

Int J Mol Sci

July 2024

Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.

The ethylene-regulated hypocotyl elongation of involves many transcription factors. The specific role of MYC transcription factors in ethylene signal transduction is not completely understood. The results here revealed that two MYCs, MYC2 and MYC3, act as negative regulators in ethylene-suppressed hypocotyl elongation.

View Article and Find Full Text PDF

Jasmonate inhibits plant growth and reduces gibberellin levels via microRNA5998 and transcription factor MYC2.

Plant Physiol

October 2023

Program of Basic Biology, Graduate School of Integrated Science for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan.

Jasmonate (JA) and gibberellins (GAs) exert antagonistic effects on plant growth and development in response to environmental and endogenous stimuli. Although the crosstalk between JA and GA has been elucidated, the role of JA in GA biosynthesis remains unclear. Therefore, in this study, we investigated the mechanism underlying JA-mediated regulation of endogenous GA levels in Arabidopsis (Arabidopsis thaliana).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!