We recently developed novel bioluminescent binding assays for several protein/peptide hormones to study their interactions with receptors using the so far brightest NanoLuc reporter. To validate the novel bioluminescent binding assay using a variety of protein/peptide hormones, in the present work we applied it to the fibroblast growth factor (FGF) family using the prototype member FGF2 as an example. A fully active recombinant FGF2 retaining a unique exposed cysteine (Cys) residue was chemically conjugated with an engineered NanoLuc carrying a unique exposed Cys residue at the C-terminus via formation of an intermolecular disulfide linkage. The NanoLuc-conjugated FGF2 (FGF2-Luc) retained high binding affinity to the overexpressed FGFR1 and the endogenous FGF receptor with the calculated dissociation constants of 161 ± 21 pM (n = 3) and 25 ± 4 pM (n = 3), respectively. In competition binding assays using FGF2-Luc as a tracer, receptor-binding potencies of wild-type or mutant FGF2s were accurately quantified. Thus, FGF2-Luc represents a novel non-radioactive tracer for the quantitative measurement of ligand-receptor interactions in the FGF family. These data suggest that the novel bioluminescent binding assay can be applied to a variety of protein/peptide hormones for ligand-receptor interaction studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4944982 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0159263 | PLOS |
Biosensors (Basel)
November 2024
Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada.
Recent advances in drug discovery have established biosensors as indispensable tools, particularly valued for their precision, sensitivity, and real-time monitoring capabilities. The review begins with a brief overview of cancer drug discovery, underscoring the pivotal role of biosensors in advancing cancer research. Various types of biosensors employed in cancer drug discovery are then explored, with particular emphasis on fluorescence- and bioluminescence-based technologies such as FRET, TR-FRET, BRET, NanoBRET, and NanoBiT.
View Article and Find Full Text PDFbioRxiv
December 2024
Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
The constitutive (ligand-independent) signaling of G protein-coupled receptors (GPCRs) is being increasingly appreciated as an integral aspect of their function; however, it can be technically hard to detect for poorly characterized, e.g. orphan, receptors of the cAMP-inhibitory Gi-coupled (GiPCR) family.
View Article and Find Full Text PDFDrug Des Devel Ther
December 2024
South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, People's Republic of China.
Background And Purpose: Bladder cancer has high recurrence rates despite standard treatments, necessitating innovative therapeutic approaches. This study introduces magnetically powered microrobots utilizing Traditional Chinese Medicine (TCM) Spora Lygodii (SL) encapsulated with Doxorubicin (DOX) and FeO nanoparticles (Fe/DOX@SL) for targeted therapy.
Methods: FeO nanoparticles were synthesized via co-precipitation and combined with SL spores and DOX through dip-coating to form Fe/DOX@SL microrobots.
Angew Chem Int Ed Engl
December 2024
Kuang Yaming Honors School, Nanjing University, Nanjing, 210023, China.
The regulation of solution pH on the structural and optical properties of peptide self-assemblies remains a critical yet unresolved issue in peptide research. This study investigates the heptapeptide Ac-IHIHIQI-NH and its intrinsic fluorescence across a range of pH levels, demonstrating that variations in pH lead to significant changes in the morphology of the self-assembled structures. While the position of the fluorescence emission remains constant-due to the stability provided by the hydrogen bonding network of the peptide backbone-the intensity of the fluorescence exhibits a direct correlation with the degree of self-assembly.
View Article and Find Full Text PDFJ Bone Miner Res
December 2024
Institute of Metabolism and Systems Research (IMSR) and Centre for Diabetes, Endocrinology and Metabolism (CEDAM), University of Birmingham, Birmingham, B15 2TT, United Kingdom.
Autosomal dominant hypocalcemia (ADH) is due to enhanced calcium-dependent signaling caused by heterozygous gain-of-function (GOF) variants in the CASR gene (ADH1) or in the GNA11 gene, encoding Gα11 (ADH2). Both ADH1 and ADH2 are associated with hypocalcemia and normal or inappropriately low levels of circulating PTH. ADH1 patients typically manifest hypercalciuria, while ADH2 is associated with short stature in approximately 42% of cases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!