[Interaction of two tumor suppressors: Phosphatase CTDSPL and Rb protein].

Mol Biol (Mosk)

Department of Molecular Oncogenetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kiev, 03680, Ukraine.

Published: January 2017

Earlier we established that CTDSPL gene encoding small carboxy-terminal domain serine phosphatase can be considered a classical tumor suppressor gene. Besides, transfection of tumor cell line MCF-7 with CTDSPL led to the content decrease of inactive phosphorylated form of another tumor suppressor, retinoblastoma protein (Rb), and subsequently to cell cycle arrest at the G1/S boundary. This result implied that small phosphatase CTDSPL is able to specifically dephosphorylate and activate Rb protein. In order to add some fuel to this hypothesis, in the present work we studied the interaction of two tumor suppressors CTDSPL and Rb in vitro. GST pool-down assay revealed that CTDSPL is able to precipitate Rb protein from MCF-7 cell extracts, while surface plasmon resonance technique showed that interaction of the two proteins is direct. Results of this study reassert that phosphatase CTDSPL and Rb could be involved in the common mechanism of cell cycle regulation.

Download full-text PDF

Source
http://dx.doi.org/10.7868/S0026898416030022DOI Listing

Publication Analysis

Top Keywords

phosphatase ctdspl
12
tumor suppressors
8
tumor suppressor
8
cell cycle
8
ctdspl
7
[interaction tumor
4
phosphatase
4
suppressors phosphatase
4
ctdspl protein]
4
protein] earlier
4

Similar Publications

Clear cell renal cell carcinoma (ccRCC) accounts for 80-90% of kidney cancers worldwide. Small C-terminal domain phosphatases CTDSP1, CTDSP2, and CTDSPL (also known as SCP1, 2, 3) are involved in the regulation of several important pathways associated with carcinogenesis. In various cancer types, these phosphatases may demonstrate either antitumor or oncogenic activity.

View Article and Find Full Text PDF

The study aimed to assess the role of hsa-miR-503-5p in cisplatin resistance and angiogenesis in LUAD and its underlying mechanisms. Hsa-miR-503-5p expression in LUAD and the target gene downstream of hsa-miR-503-5p was predicted by bioinformatics analysis. Binding relationship between the two genes was verified by dual-luciferase reporter assay.

View Article and Find Full Text PDF

[SCP Phosphatases and Oncogenesis].

Mol Biol (Mosk)

August 2021

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russia.

Small SCP phosphatases CTDSP1, CTDSP2, and CTDSPL specifically dephosphorylate serine and threonine residues in protein molecules. The enzymes are involved in regulating activity of RNA polymerase II at the transition from transcription initiation to elongation, regulating expression of neuron-specific genes, and activating the key cell-cycle protein pRb at the G1/S boundary. In addition, the substrates of SCP phosphatases include SMAD transcription modulators; AKT1 protein kinase, which regulates the cell cycle, apoptosis, and angiogenesis; the TWIST1 and c-MYC transcription factors; Ras family proteins, which are involved in signaling pathways regulating the cell growth and apoptosis; CDCA3, which is associated with cell division; the cyclin-dependent kinase inhibitor p21; and the promyelocytic leukemia protein (PML), which is involved in regulation of the tumor suppressors p53, PTEN, and mTOR.

View Article and Find Full Text PDF

Tumor suppressor properties of the small C-terminal domain phosphatases in non-small cell lung cancer.

Biosci Rep

December 2019

Laboratory of Postgenomic Research, Laboratory of Structural and Functional Genomics, Laboratory of Cellular Basics of Cancer Development, Laboratory of DNA-Protein Interactions, Laboratory of Protein Conformational Polymorphism in Health and Disease, Center for Precision Genome Editing and Genetic Technologies for Biomedicine. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.

Non-Small Cell Lung Cancer (NSCLC) is responsible for the majority of deaths caused by cancer. Small C-terminal domain (CTD) phosphatases (SCP), CTDSP1, CTDSP2 and CTDSPL (CTDSPs) belong to SCP/CTDSP subfamily and are involved in many vital cellular processes and tumorigenesis. High similarity of their structures suggests similar functions.

View Article and Find Full Text PDF

Head and neck squamous cell carcinoma (HNSCC) is a global disease and mortality burden, necessitating the elucidation of its molecular progression for effective disease management. The study aims to understand the molecular profile of three candidate cell cycle regulatory genes, RBSP3, LIMD1 and CDC25A in the basal/ parabasal versus spinous layer of normal oral epithelium and during head and neck tumorigenesis. Immunohistochemical expression and promoter methylation was used to determine the molecular signature in normal oral epithelium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!