Wet conditions in heterogeneous catalysis can substantially improve the rate of surface reactions by assisting the diffusion of reaction intermediates between surface reaction sites. The atomistic mechanisms underpinning this accelerated mass transfer are, however, concealed by the complexity of the dynamic water/solid interface. Here we employ ab initio molecular dynamics simulations to disclose the fast diffusion of protons and hydroxide species along the interface between water and ceria, a catalytically important, highly reducible oxide. Up to 20% of the interfacial water molecules are shown to dissociate at room temperature via proton transfer to surface O atoms, leading to partial surface hydroxylation and to a local increase of hydroxide species in the surface solvation layer. A water-mediated Grotthus-like mechanism is shown to activate the fast and long-range proton diffusion at the water/oxide interface. We demonstrate the catalytic importance of this dynamic process for water dissociation at ceria-supported Pt nanoparticles, where the solvent accelerates the spillover of ad-species between oxide and metal sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.6b03446 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!