Nanocapillary Adhesion between Parallel Plates.

Langmuir

Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States.

Published: August 2016

Molecular dynamics simulations are used to study capillary adhesion from a nanometer scale liquid bridge between two parallel flat solid surfaces. The capillary force, Fcap, and the meniscus shape of the bridge are computed as the separation between the solid surfaces, h, is varied. Macroscopic theory predicts the meniscus shape and the contribution of liquid/vapor interfacial tension to Fcap quite accurately for separations as small as two or three molecular diameters (1-2 nm). However, the total capillary force differs in sign and magnitude from macroscopic theory for h ≲ 5 nm (8-10 diameters) because of molecular layering that is not included in macroscopic theory. For these small separations, the pressure tensor in the fluid becomes anisotropic. The components in the plane of the surface vary smoothly and are consistent with theory based on the macroscopic surface tension. Capillary adhesion is affected by only the perpendicular component, which has strong oscillations as the molecular layering changes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.6b02024DOI Listing

Publication Analysis

Top Keywords

macroscopic theory
12
capillary adhesion
8
solid surfaces
8
capillary force
8
meniscus shape
8
molecular layering
8
nanocapillary adhesion
4
adhesion parallel
4
parallel plates
4
molecular
4

Similar Publications

This study describes the process of developing a high-impact, low-cost, and low-maintenance air ventilation system for anatomy facilities. It employed the strategic application of Value Engineering (VE), assuring that the air ventilation system meets contemporary threshold limit values (TLVs) for formaldehyde in the working zone of dissection tables. A creative-innovative construction methodology was used, combining the Theory of Inventive Problem Solving (TRIZ/TIPS) and VE for an anatomy laboratory air ventilation concept.

View Article and Find Full Text PDF

Enhancing Microemulsion-Based Therapeutic Drug Delivery: Exploring Surfactants, Co-Surfactants, and Quality-by-Design Strategies within Pseudoternary Phase Diagrams.

Crit Rev Ther Drug Carrier Syst

January 2025

Associate Professor of Pharmaceutics, Faculty of Health and Allied Sciences, Amity University Noida India, Pharmaceutics Domain, Uttar Pradesh, India; Member, Indian National Young Academy of Sciences (INYAS), INSA, New Delhi, India.

Microemulsions (MEs) are homogeneous, isotropic, transparent, and thermodynamically stable mixtures of water, oil, and surfactants. Their unique properties have garnered increasing interest across various fields, including chemistry, pharmacology, biotechnology, and biology. This review aims to provide a comprehensive overview of ME compositions, their macroscopic appearances, and the roles of their essential components - oil, water, surfactant, and co-surfactant - in controlling the nature and stability of MEs.

View Article and Find Full Text PDF

Collision integrals within the Chapman-Enskog theory for a generalized Lennard-Jones potential.

J Chem Phys

January 2025

Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS J7-10, Richland, Washington 99352, USA.

We report the values of the collision integrals, needed for the calculation of the macroscopic transport properties such as viscosity (η) and diffusion coefficient (D) of gases within the Chapman-Enskog kinetic gas theory, for a generalized Lennard-Jones potential (gLJ), a more general potential with an adjustable long range 1/r dependence that can describe a wide range of intermolecular interactions.

View Article and Find Full Text PDF

Weak non-linearities of amorphous polymer under creep in the vicinity of the glass transition.

Eur Phys J E Soft Matter

January 2025

Soft Matter Science and Engineering (SIMM), ESPCI Paris, PSL University, Sorbonne Université, CNRS, Rue Vauquelin, 75005, Paris, France.

The creep behavior of an amorphous poly(etherimide) polymer is investigated in the vicinity of its glass transition in a weakly non linear regime where the acceleration of the creep response is driven by local configurational rearrangements. From the time shifts of the creep compliance curves under stresses from 1 to 15 MPa and in the temperature range between and , where is the glass transition temperature, we determine a macroscopic acceleration factor. The macroscopic acceleration is shown to vary as temperature with , where is the macroscopic stress and Y is a decreasing function of compliance.

View Article and Find Full Text PDF

Macroscopic coherence in quantum fluids allows the observation of interference effects in their wavefunctions, and enables applications such as superconducting quantum interference devices based on Josephson tunneling. The Josephson effect manifests in both fermionic and bosonic systems, and has been well studied in superfluid helium and atomic Bose-Einstein condensates. In exciton-polariton condensates-that offer a path to integrated semiconductor platforms-creating weak links in ring geometries has so far remained challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!