At the Interface of Chemical and Biological Synthesis: An Expanded Genetic Code.

Cold Spring Harb Perspect Biol

Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037 California Institute for Biomedical Research, La Jolla, California 92037.

Published: September 2016

The ability to site-specifically incorporate noncanonical amino acids (ncAAs) with novel structures into proteins in living cells affords a powerful tool to investigate and manipulate protein structure and function. More than 200 ncAAs with diverse biological, chemical, and physical properties have been genetically encoded in response to nonsense or frameshift codons in both prokaryotic and eukaryotic organisms with high fidelity and efficiency. In this review, recent advances in the technology and its application to problems in protein biochemistry, cellular biology, and medicine are highlighted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5008073PMC
http://dx.doi.org/10.1101/cshperspect.a023945DOI Listing

Publication Analysis

Top Keywords

interface chemical
4
chemical biological
4
biological synthesis
4
synthesis expanded
4
expanded genetic
4
genetic code
4
code ability
4
ability site-specifically
4
site-specifically incorporate
4
incorporate noncanonical
4

Similar Publications

The tau protein misfolds in neurodegenerative diseases such as Alzheimer's disease (AD). These pathological tau aggregates are associated with neuronal membranes, but molecular structural information about how disease-like tau fibrils interact with the lipid membrane is scarce. Here, we use solid-state NMR to investigate the structure of a tau construct bearing four AD-relevant phospho-mimetic mutations (4E tau) with cholesterol-containing high-curvature lipid membranes, which mimic the membrane of synaptic vesicles in neurons.

View Article and Find Full Text PDF

The inductive effect is a central concept in chemistry and is often exemplified by the p values of acetic acid derivatives. The reduction in p is canonically attributed to the reduction in the electron density of the carboxylate group through the inductive effect. However, wave functional theory calculations presented herein reveal that the charge density of the carboxylate group is not explained by the inductive effect.

View Article and Find Full Text PDF

A high performance heterogeneous hardware architecture for brain computer interface.

Biomed Eng Lett

January 2025

School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384 People's Republic of China.

Brain-computer interface (BCI) has been widely used in human-computer interaction. The introduction of artificial intelligence has further improved the performance of BCI system. In recent years, the development of BCI has gradually shifted from personal computers to embedded devices, which boasts lower power consumption and smaller size, but at the cost of limited device resources and computing speed, thus can hardly improve the support of complex algorithms.

View Article and Find Full Text PDF

In processes such as electrodialysis, the applied electrical potential is constrained by concentration polarization at the membrane/solution interface. This polarization, which intensifies at higher current densities, impedes ion transport efficiency and may lead to problems such as salt precipitation, membrane degradation, and increased energy consumption. Therefore, understanding concentration polarization is essential for enhancing membrane performance, improving efficiency, and reducing operational costs.

View Article and Find Full Text PDF

The effective S-scheme homojunction relies on the precise regulation of band structure and construction of advantaged charge migration interfaces. Here, the electronic structural properties of g-C3N4 were modulated through meticulous polymerization of self-assembled supramolecular precursors. Experimental and DFT results indicate that both the intrinsic bandgap and surface electronic characteristics were adjusted, leading to the formation of an in-situ reconstructed homojunction interface facilitated by intrinsic van der Waals forces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!