A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pigment Epithelium-Derived Factor (PEDF) Improves Ischemic Cardiac Functional Reserve Through Decreasing Hypoxic Cardiomyocyte Contractility Through PEDF Receptor (PEDF-R). | LitMetric

Background: Pigment epithelium-derived factor (PEDF), which belongs to the noninhibitory serpin family, has shown the ability to stimulate several physiological processes, such as antiangiogenesis, anti-inflammation, and antioxidation. In the present study, the effects of PEDF on contractility and calcium handling of rat ventricular myocytes were investigated.

Methods And Results: Adult Sprague-Dawley rat models of acute myocardial infarction (AMI) were surgically established. PEDF-lentivirus was delivered into the myocardium along and away from the infarction border to overexpress PEDF. Video edge detection was used to measure myocyte shortening in vitro. Intracellular Ca(2+) was measured in cells loaded with the Ca(2+) sensitive fluorescent indicator, Fura-2-acetoxymethyl ester. PEDF local overexpression enhanced cardiac functional reserve in AMI rats and reduced myocardial contracture bordering the infracted area. Exogenous PEDF treatment (10 nmol/L) caused a significant decrease in amplitudes of isoproterenol-stimulated myocyte shortening, Ca(2+) transients, and caffeine-evoked Ca(2+) transients in vitro. We then tested a potential role for PEDF receptor-mediated effects on upregulation of protein kinase C (PKC) and found evidence of signaling through the diacylglycerol/PKCα pathway. We also confirmed that pretreatment of cardiomyocytes with PEDF exhibited dephosphorylation of phospholamban at Ser(16), which could be attenuated with PKC inhibition.

Conclusions: The results suggest that PEDF depresses myocyte contractility by suppressing phosphorylation of phospholamban and Ca(2+) transients in a PKCα-dependent manner through its receptor, PEDF receptor, therefore improving cardiac functional reserve during AMI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5015364PMC
http://dx.doi.org/10.1161/JAHA.115.003179DOI Listing

Publication Analysis

Top Keywords

cardiac functional
12
functional reserve
12
ca2+ transients
12
pedf
11
pigment epithelium-derived
8
epithelium-derived factor
8
factor pedf
8
pedf receptor
8
myocyte shortening
8
reserve ami
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!