Matrix metalloproteinase-1 (MMP-1) plays an important role in fibrolysis by degrading excessively deposited collagen I and III. We previously demonstrated that diethyldithiocarbamate (DDC) up-regulates MMP-1 in hepatic stellate cells via the ERK1/2 and Akt signalling pathways. In the current study, we attempted to further explore the molecular mechanisms involved in the regulation of MMP-1. We treated a co-cultured system that included hepatocytes (C3A) and hepatic stellate cells (LX-2) with DDC. The data revealed that the transcriptional factor ETS-1, which is an important regulator of MMP-1, was up-regulated in LX-2 cells following DDC treatment. Furthermore, the up-regulation of MMP-1 by DDC has been abrogated through employing si-ETS-1 to block expression of ETS-1. We found that DDC significantly inhibited the expression of miR-222 in LX-2 cells. We transfected miR-222 mimic into LX-2 cells and then co-cultured the cells with C3A. The up-regulation of ETS-1 and MMP-1 in LX-2 cells treated with DDC were inhibited after miR-222 mimic transfection. These data indicate that DDC up-regulated MMP-1 in LX-2 cells through the miR-222/ETS-1 pathway. Finally, we treated the co-cultured system with an Akt inhibitor (T3830) and an ERK1/2 inhibitor (U0126). Both T3830 and U0126 blocked the suppression of miR-222 by DDC in LX-2. Collectively, these data indicate that DDC up-regulated MMP-1 in LX-2 cells through the Akt and ERK/miR-222/ETS-1 pathways. Our study provides experimental data that will aid the control of the process of fibrolysis in liver fibrosis prevention and treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4995499PMC
http://dx.doi.org/10.1042/BSR20160111DOI Listing

Publication Analysis

Top Keywords

lx-2 cells
24
hepatic stellate
12
stellate cells
12
mmp-1 in lx-2
12
cells
10
ddc
9
matrix metalloproteinase-1
8
treated co-cultured
8
co-cultured system
8
lx-2
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!