Background: Light chain amyloidosis (AL) is associated with high mortality, especially in patients with advanced cardiovascular involvement. It is caused by toxicity of misfolded light chain proteins (LC) in vascular, cardiac, and other tissues. There is no treatment to reverse LC tissue toxicity. We tested the hypothesis that nanoliposomes composed of monosialoganglioside, phosphatidylcholine, and cholesterol (GM1 ganglioside-containing nanoliposomes [NLGM1]) can protect against LC-induced human microvascular dysfunction and assess mechanisms behind the protective effect.

Methods And Results: The dilator responses of ex vivo abdominal adipose arterioles from human participants without AL to acetylcholine and papaverine were measured before and after exposure to LC (20 μg/mL) with or without NLGM1 (1:10 ratio for LC:NLGM1 mass). Human umbilical vein endothelial cells were exposed for 18 to 20 hours to vehicle, LC with or without NLGM1, or NLGM1 and compared for oxidative and nitrative stress response and cellular viability. LC impaired arteriole dilator response to acetylcholine, which was restored by co-treatment with NLGM1. LC decreased endothelial cell nitric oxide production and cell viability while increasing superoxide and peroxynitrite; these adverse effects were reversed by NLGM1. NLGM1 increased endothelial cell protein expression of antioxidant enzymes heme oxygenase 1 and NAD(P)H quinone dehydrogenase 1 and increased nuclear factor, erythroid 2 like 2 (Nrf-2) protein. Nrf-2 gene knockdown reduced antioxidant stress response and reversed the protective effects of NLGM1.

Conclusions: NLGM1 protects against LC-induced human microvascular endothelial dysfunction through increased nitric oxide bioavailability and reduced oxidative and nitrative stress mediated by Nrf-2-dependent antioxidant stress response. These findings point to a potential novel therapeutic approach for light chain amyloidosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937272PMC
http://dx.doi.org/10.1161/JAHA.116.003318DOI Listing

Publication Analysis

Top Keywords

light chain
16
stress response
12
chain proteins
8
chain amyloidosis
8
lc-induced human
8
human microvascular
8
nlgm1 nlgm1
8
oxidative nitrative
8
nitrative stress
8
endothelial cell
8

Similar Publications

Oxidative stress and inflammation are indispensable components of ischemia-reperfusion (IR) injury. In this study, we investigated the effects of low and high doses of caftaric acid (CA) on reducing kidney and remote organ damage induced by IR. We divided Wistar rats into four groups: sham, IR, low (40 mg/kg body weight (BW)), and high (80 mg/kg BW) CA groups.

View Article and Find Full Text PDF

Conductive hydrogels have great potential for applications in flexible wearable sensors due to the combination of biocompatibility, mechanical flexibility and electrical conductivity. However, constructing conductive hydrogels with high toughness, low hysteresis and skin-like modulus simultaneously remains challenging. In the present study, we prepared a tough and conductive polyacrylamide/pullulan/ammonium sulfate hydrogel with a semi-interpenetrating network.

View Article and Find Full Text PDF

Scaffolding and Heavy-Atom Effects of Metal Chains Enhanced Tunable Long Persistent Luminescence in Metal-Organic Frameworks.

Inorg Chem

December 2024

Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.

Metal-organic frameworks (MOFs) with long persistent luminescence (LPL) have attracted extensive research attention due to their potential applications in information encryption, anticounterfeiting technology, and security logic. The strategic combinations of organic phosphor linkers and metal ions lead to tremendous frameworks, which could unveil many undiscovered properties of organics. Here, the synthesis and characterization of a three-dimensional MOF (Cd-MOF) is reported, which demonstrates enhanced blue photoluminescence and a phosphorescent lifetime of 124 ms as compared to the pristine linker (HL) under ambient conditions due to the scaffolding and heavy-atom effects of metal chains in the framework.

View Article and Find Full Text PDF

Photocatalytic Alkene-Migrative Chain Elongation of 2-Phosphinostyrenes with Aldehydes.

Org Lett

December 2024

Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.

The photocatalytic alkene-migrative chain elongation reaction of 2-phosphinostyrenes with aldehydes under mild conditions in response to blue light was demonstrated. A broad range of aldehydes, both aliphatic and aromatic, participated in this reaction to afford alkene-phosphine oxides in a -selective manner. Mechanistic experiments suggested the formation of benzophospholene-based ylide intermediates via photocatalytic cyclization of phosphinostyrenes followed by solvent-mediated proton transfer under base-free reaction conditions.

View Article and Find Full Text PDF

Case report: a case of AL amyloidosis with spontaneous giant retroperitoneal hematoma.

Int J Emerg Med

December 2024

Emergency Department, The State Key Laboratory for Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.

Background: Systemic amyloidosis is a kind of clinical syndrome in which amyloid is deposited between the cells of various organs in the body, resulting in gradual failure of the function of the affected organs. Depending on the site of amyloid deposition, it may show various clinical symptoms of multiple system involvement.

Patient Concerns: A 44-years-old female with spontaneous giant retroperitoneal hematoma was admitted to the emergency department of Peking Union Medical College Hospital in Mar 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!