Synthetic elicitors are drug-like compounds that are structurally distinct from natural defense elicitors. They can protect plants from diseases by activating host immune responses and can serve as tools for the dissection of the plant immune system as well as leads for the development of environmentally-safe pesticide alternatives. By high-throughput screening, we previously identified 114 synthetic elicitors that activate expression of the pathogen-responsive CaBP22(-333)::GUS reporter gene in Arabidopsis thaliana (Arabidopsis), 33 of which are [(phenylimino)methyl]phenol (PMP) derivatives or PMP-related compounds. Here we report on the characterization of one of these compounds, 2,4-dichloro-6-{(E)-[(3-methoxyphenyl)imino]methyl}phenol (DPMP). DPMP strongly triggers disease resistance of Arabidopsis against bacterial and oomycete pathogens. By mRNA-seq analysis we found transcriptional profiles triggered by DPMP to resemble typical defense-related responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4944173PMC
http://dx.doi.org/10.1038/srep29554DOI Listing

Publication Analysis

Top Keywords

arabidopsis thaliana
8
synthetic elicitors
8
synthetic elicitor
4
dpmp
4
elicitor dpmp
4
dpmp 24-dichloro-6-{e-[3-methoxyphenylimino]methyl}phenol
4
24-dichloro-6-{e-[3-methoxyphenylimino]methyl}phenol triggers
4
triggers strong
4
strong immunity
4
arabidopsis
4

Similar Publications

Two pathogen-inducible UDP-glycosyltransferases, UGT73C3 and UGT73C4, catalyze the glycosylation of pinoresinol to promote plant immunity in Arabidopsis.

Plant Commun

January 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao 266237, China. Electronic address:

UDP-glycosyltransferases (UGTs) constitute the largest glycosyltransferase family in the plant kingdom. They are responsible for transferring sugar moieties onto various small molecules to control many metabolic processes. However, their physiological significance in plants is largely unknown.

View Article and Find Full Text PDF

Calcium-dependent protein kinases (CPKs) are plant proteins that directly bind calcium ions before phosphorylating substrates involved in biotic and abiotic stress responses, as well as development. CPK3 () is involved with plant signaling pathways such as stomatal movement regulation, salt stress response, apoptosis, seed germination and pathogen defense. In this study, and its orthologues in relatively distant plant species such as rice (, monocot) and kiwifruit (, asterid eudicot) were analyzed in response to drought, bacteria, fungi, and virus infections.

View Article and Find Full Text PDF

Global changes and growing demands have led to the development of new molecular approaches to improve crop physiological performances. Carbonic anhydrase (CA) enzymes, ubiquitous across various life kingdoms, stand out for their critical roles in plant photosynthesis and water relations. We hypothesize that the modulators of human CAs could affect plant physiology.

View Article and Find Full Text PDF

The (citrus) plant produces various phytohormones due to the significant involvement of the carotenoid cleavage oxygenase () gene family in its growth and development. genes can be divided into two main categories: (9-cis-epoxy carotenoid dioxygenase), responsible for abscisic acid (ABA) production, and (carotenoid cleavage dioxygenase), involved in pigment and strigolactone formation. To better understand the roles and positions of gene members in relation to these hormones, researchers analyzed the clementine genome.

View Article and Find Full Text PDF

Plants respond to higher ambient temperatures by modifying their growth rate and habitus. This review aims to summarize the accumulated knowledge obtained with Arabidopsis seedlings grown at normal and elevated ambient temperatures. Thermomorphogenesis in the shoot and the root is overviewed separately, since the experiments indicate differences in key aspects of thermomorphogenesis in the two organs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!