Background: Japanese cedar pollinosis (JCP) is a challenging public health problem in Japan. Altered gut microbiota is associated with several diseases, including allergic diseases. However, only a few studies have focused on JCP and the underlying mechanisms for probiotic effects remain unclear. In addition, this study is the first observation of the correlation between the gut microbiota and blood lipid in JCP.

Methods: Faecal samples from JCP subjects were collected before and after treatment with (n = 14) and without (n = 11) LGG-TMC0356-fermented milk for 10 weeks. Gut microbiota composition was characterized from faecal DNA using sequencing of 16S rRNA genes.

Results: 16S rRNA-based operational taxonomic unit clustering of the microbiota revealed that LGG-TMC0356-fermented milk significantly altered gut microbiota after 10 weeks of milk consumption, and eight dominant genera of microbes were detected. During the JCP season, the Bacteroidetes/Firmicutes ratio, when compared to baseline, was significantly decreased in subjects at end of the study. Bacteroidetes showed positive correlation with LDL- and HDL-cholesterol levels, whereas Firmicutes showed negative correlation with total cholesterol, LDL- and HDL- cholesterol.

Conclusions: The altered gut microbiota through supplementation of fermented milk containing the study probiotics may be a prospective target for protection against JCP, with beneficial effects on blood lipid levels.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00394-016-1264-3DOI Listing

Publication Analysis

Top Keywords

gut microbiota
24
altered gut
12
japanese cedar
8
cedar pollinosis
8
blood lipid
8
lgg-tmc0356-fermented milk
8
microbiota
7
gut
6
jcp
5
probiotics modulate
4

Similar Publications

Dietary profiles of wild carnivores and Blastocystis occurrence: The case of the endangered Iberian lynx (Lynx pardinus) and systematic review.

Res Vet Sci

December 2024

CIBERINFEC, ISCIII - CIBER Infectious Diseases, Health Institute Carlos III, Madrid, Spain; Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain.

Recent molecular and metagenomic studies have revealed that the obligate anaerobic protist Blastocystis is found more prevalently and with higher subtype diversities in herbivore species than in carnivore species. However, information on wild carnivore species is scarce. Here, we investigated the presence of Blastocystis by molecular methods in fecal DNA samples of free-ranging and captive Iberian lynxes from Spain (n = 243) and Portugal (n = 30).

View Article and Find Full Text PDF

Effects of environmental bisphenol S exposure on male rat reproductive health and gut-blood-testicular axis integrity.

Ecotoxicol Environ Saf

January 2025

School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China. Electronic address:

In this study, male Sprague-Dawley (SD) rats were exposed to bisphenol S (BPS) at environmentally relevant concentrations to investigate its reproductive toxicity and evaluate its effects on the gut-blood-testicular axis. After 28 days of exposure to BPS (0.05 and 20 mg/kg), the results showed a reduction in weight gain and the induction of reproductive toxicity in male rats, including decreased sperm parameters, lower sperm viability, and increased abnormal sperm density and mortality.

View Article and Find Full Text PDF

Background: Presently, the mitigation and governance of obesity have surfaced as significant public health dilemmas on a global scale. A wealth of studies indicated that the host gut microbiota is instrumental in regulating the interplay between high-fat diet (HFD) intake and the pathogenesis of obesity. Physiological premature fruit drop, a major byproduct of citrus, is rich in a variety of bioactive constituents, yet its potential has remained underutilized for an extended period.

View Article and Find Full Text PDF

Enterolactone combined with m6A Reader IGF2BP3 inhibits malignant angiogenesis and disease progression in ovarian cancer.

Phytomedicine

December 2024

Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China; Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, T2N 4N1, Canada. Electronic address:

Background: Among all gynecological cancers, ovarian cancer is the leading cause of death. Epithelial ovarian cancer (EOC) accounts for over 85 % of ovarian cancer cases and is characterized by insidious onset, early metastasis, and a high recurrence rate. Alterations in gut microbiota, often as a consequence of chemotherapy, can promote cancer development and exacerbate the disease.

View Article and Find Full Text PDF

Indole-3-propionic acid (IPA), a metabolite produced by gut microbiota through tryptophan metabolism, has recently been identified as playing a pivotal role in bone metabolism. IPA promotes osteoblast differentiation by upregulating mitochondrial transcription factor A (Tfam), contributing to increased bone density and supporting bone repair. Simultaneously, it inhibits the formation and activity of osteoclasts, reducing bone resorption, possibly through modulation of the nuclear factor-κB (NF-κB) pathway and downregulation of osteoclast-associated factors, thereby maintaining bone structural integrity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!