Objectives: The objective of this in vitro study was to investigate fracture loads of screw-retained zirconia-based molar restorations (hybrid abutment crown) fabricated with different restorative materials and designs.
Material And Methods: Forty-four screw-retained zirconia-based molar restorations were fabricated on dental implants and divided into four groups (n = 11): porcelain-layered zirconia-based restorations (PLZ), indirect composite-layered zirconia-based restorations (ILZ), metal-ceramic restorations (MC), and monolithic zirconia restorations (MONO). The zirconia-based restorations in the PLZ, ILZ, and MONO groups were adhesively bonded on implant abutments with a dual-polymerized resin material. All restorations were tightened on implant bodies with titanium screws and were tested for fracture resistance. The Kruskal-Wallis test and Steel-Dwass test were used to evaluate differences in fracture loads (α = 0.05).
Results: As compared with the other groups, the MONO specimens had a significantly higher mean fracture resistance (7.54 kN); no significant differences were found among the PLZ (1.96 kN), ILZ (1.80 kN), and MC (1.45 kN) groups (P > 0.05). For the PLZ, ILZ, and MC groups, all specimens fractured within the layering materials. In contrast, the fracture mode for the MONO group was complete fracture of the restorations.
Conclusions: All restorations withstood the masticatory forces. Fracture loads were significantly higher for screw-retained implant-supported monolithic zirconia restorations than for screw-retained bilayered restorations. For the screw-retained bilayered zirconia-based restorations, the fracture resistance of ILZ restorations was comparable to that of PLZ restorations and MC restorations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/clr.12926 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!