Novel incretin analogues improve autophagy and protect from mitochondrial stress induced by rotenone in SH-SY5Y cells.

J Neurochem

Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YQ, UK.

Published: October 2016

Currently, there is no viable treatment available for Parkinson's disease (PD) that stops or reverses disease progression. Interestingly, studies testing the glucagon-like-peptide-1 (GLP-1) mimetic Exendin-4 have shown neuroprotective/neurorestorative properties in pre-clinical tests and in a pilot clinical study of PD. Incretin analogues were originally developed to treat type 2 diabetes and several are currently on the market. In this study, we tested novel incretin analogues on the dopaminergic SH-SY5Y neuroblastoma cells against a toxic mitochondrial complex I inhibitor, Rotenone. Here, we investigate for the first time the effects of six different incretin receptor agonists - Liraglutide, D-Ser2-Oxyntomodulin, a GLP-1/GIP Dual receptor agonist, dAla(2)-GIP-GluPal, Val(8)GLP-1-GluPal and exendin-4. Post-treatment with doses of 1, 10 or 100 nM of incretin analogues for 12 h increased the survival of SH-SY5Y cells treated with 1 μM Rotenone for 12 h. Furthermore, we studied the post-treatment effect of 100 nM incretin analogues against 1 μM Rotenone stress on apoptosis, mitochondrial stress and autophagy markers. We found significant protective effects of the analogues against Rotenone stress on cell survival and on mitochondrial and autophagy-associated markers. The novel GLP-1/GIP Dual receptor agonist was superior and effective at a tenfold lower concentration compared to the other analogues. Using the Phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002, we further show that the neuroprotective effects are partially PI3K-independent. Our data suggest that the neuroprotective properties exhibited by incretin analogues against Rotenone stress involve enhanced autophagy, increased Akt-mediated cell survival and amelioration of mitochondrial dysfunction. These mechanisms can explain the neuroprotective effects of incretin analogues reported in clinical trials. GLP-1, GIP and dual incretin receptor agonists showed protective effects in SH-SY5Y cells treated with the stressor Rotenone. The novel GLP-1/GIP dual receptor agonist was superior and effective at a tenfold lower concentration compared to the other analogues. The drugs protected the cells from rotenone-induced impairment in cell growth and Akt activation, mitochondrial damage, impairments of autophagy and apoptotic cell signalling. See paper for details.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jnc.13736DOI Listing

Publication Analysis

Top Keywords

incretin analogues
28
sh-sy5y cells
12
glp-1/gip dual
12
dual receptor
12
receptor agonist
12
rotenone stress
12
analogues
10
novel incretin
8
mitochondrial stress
8
incretin
8

Similar Publications

Introduction: The glucagon-like peptide-1 (GLP-1) analogue semaglutide is approved as an oral formulation for the treatment of type 2 diabetes. This study aimed to confirm bioequivalence between a new, second-generation (2G) oral semaglutide formulation (1.5, 4 and 9 mg) and the initially approved first-generation (1G) formulation (3, 7 and 14 mg).

View Article and Find Full Text PDF

Supaglutide alleviates hepatic steatosis in monkeys with spontaneous MASH.

Diabetol Metab Syndr

December 2024

Shanghai Innogen Pharmaceutical Co., Ltd, Shanghai, China.

Background: Glucagon-like peptide 1 (GLP-1) is an incretin hormone and plays an important role in regulating glucose homeostasis. GLP-1 has a short half-life due to degrading enzyme dipeptidyl peptidase-IV and rapid kidney clearance, which limits its clinical application as a therapeutic agent. We demonstrated previously that supaglutide, a novel long-acting GLP-1 analog, exerted hypoglycemic, hypolipidemic, and weight loss effects in type 2 diabetic db/db mice, DIO mice, and diabetic monkeys.

View Article and Find Full Text PDF

Objectives: This article compares metabolic, pancreatic, and gut-derived hormone responses to isomaltulose ingestion, before versus during submaximal sustained exercise, in adults with type 1 diabetes (T1D) using automated insulin delivery systems.

Methods: In a randomized, cross-over trial, eight participants with T1D being treated with automated insulin pumps (five females, age: 47 ± 16 years, BMI: 27.5 ± 3.

View Article and Find Full Text PDF

The concept of treating diabetes with gut hormones was proposed in the early days of endocrinology (1902), but was not put into practice until the early 2000s. The discovery of the incretin effect (potentiation of insulin secretion when glucose is taken orally compared to intravenously) led to the discovery of the two main gut hormones responsible for this effect: GIP and GLP-1. The reduction of the incretin effect is directly involved in the pathogenesis of type 2 diabetes, which has led to the development of a series of innovative therapies such as GLP-1 analogues, GLP-1 receptor agonists, GIP/GLP-1 co-agonists and GIP/GLP-1/glucagon tri-agonists.

View Article and Find Full Text PDF

Metabolic Dysfunction-Associated Steatotic Liver Disease, Hypertriglyceridemia and Cardiovascular Risk.

Eur J Prev Cardiol

December 2024

Metabolism and Lipids Program, Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai, New York, New York, USA.

Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a spectrum of liver conditions ranging from simple steatosis to the more severe metabolic dysfunction-associated steatohepatitis (MASH). MASLD is strongly linked to insulin resistance disorders, with a high prevalence among patients with type 2 diabetes. Long-term complications include liver cirrhosis, liver cancer, and cardiovascular disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!