Objective: Accumulated studies suggest that exogenously administered carbon monoxide is beneficial for the resolution of acute lung inflammation. The present study aimed to examine the effects and the underlying mechanisms of CORM-2 on thioredoxin-interacting protein (TXNIP)/NLRP3 inflammasome pathway in lipopolysaccharide (LPS)-induced acute lung injury (ALI).

Methods: ALI was intratracheally induced by LPS in C57BL6 mice. CORM-2 or iCORM-2 (30mg/kg i.p.) was administered immediately before LPS instillation. 6 h later, lung bronchoalveolar lavage (BAL) fluids were acquired for IL-18, IL-1β, and cell measurement, and lung issues were collected for histologic examination, wet/dry weight ratio, and determination of TXNIP/NLRP3 inflammasome expression, NLRP3 inflammasome and NF-ΚB activity, and reactive oxygen species (ROS) production.

Results: LPS triggered significant lung edema, lung injury, and leukocyte infiltration, and elevated the levels of IL-1β and IL-18 in lung BAL fluids. CORM-2 pretreatment resulted in a marked amelioration of lung injury and reduced IL-1β and IL-18 secretion in BAL fluids. In lung tissues; CORM-2 down-regulated mRNA and protein level of TXNIP, NLRP3, ASC, and caspase-1. Furthermore, CORM-2 reduced ROS production, inhibited NLRP3 inflammasome and NF-κB activity, and interaction of TXNIP-NLRP3. However, no significant differences were detected between the LPS and iCORM-2 (an inactive variant of CORM-2) group.

Conclusion: CORM-2 suppresses TXNIP/NLRP3 inflammasome pathway and protects against LPS-induced lung injury.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00011-016-0973-7DOI Listing

Publication Analysis

Top Keywords

lung injury
20
txnip/nlrp3 inflammasome
16
inflammasome pathway
12
acute lung
12
bal fluids
12
lung
11
corm-2
8
lps-induced acute
8
nlrp3 inflammasome
8
il-1β il-18
8

Similar Publications

Study Design: Experimental Animal Study.

Objective: To continue validating an antibody which targets an epitope of neurofilament light chain (NF-L) only available during neurodegeneration and to utilize the antibody to describe the pattern of axonal degeneration 10 days post-unilateral C4 contusion in the rat.

Setting: University of Florida laboratory in Gainesville, USA.

View Article and Find Full Text PDF

Background: Adult people with cystic fibrosis (PwCF) have a higher risk of end-stage kidney disease than the general population. The nature and mechanism of kidney disease in CF are unknown. This study quantifies urinary kidney injury markers and examines the hypothesis that neutrophil activation and lung infection are associated with early kidney injury in CF.

View Article and Find Full Text PDF

Objectives: The purpose of this study was to evaluate the predictive value of the cough peak flow (CPF) for successful extubation in postcraniotomy critically ill patients.

Design: This was a single-centre prospective diagnostic study.

Setting: The study was conducted in three intensive care units (ICUs) of a teaching hospital.

View Article and Find Full Text PDF

We have previously reported that high-alcohol-producing Klebsiella pneumoniae (HiAlc Kpn) in the gut can cause endo-alcoholic fatty liver disease. Here, we discover that 91.2% of Kpn isolates from pulmonary disease samples also produce excess ethanol, which may be associated with respiratory disease severity.

View Article and Find Full Text PDF

Low-dose radiation ameliorates PM2.5-induced lung injury through non-canonical TLR1/TLR2-like receptor pathways modulated by Akkermansia muciniphila.

Ecotoxicol Environ Saf

January 2025

NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin 130021, PR China. Electronic address:

Exposure of PM2.5 can cause different degrees of lung injury, which is referred with inflammatory response. Some evidences showed that low-dose radiation (LDR) induces hormesis in immune, however, it is unknown if LDR ameliorates the PM2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!