Although early rat studies demonstrated that administration of glucose diminishes dopaminergic midbrain activity, evidence in humans has been lacking so far. In the present functional magnetic resonance imaging study, glucose was intravenously infused in healthy human male participants while seeing images depicting low-caloric food (LC), high-caloric food (HC), and non-food (NF) during a food/NF discrimination task. Analysis of brain activation focused on the ventral tegmental area (VTA) as the origin of the mesolimbic system involved in salience coding. Under unmodulated fasting baseline conditions, VTA activation was greater during HC compared with LC food cues. Subsequent to infusion of glucose, this difference in VTA activation as a function of caloric load leveled off and even reversed. In a control group not receiving glucose, VTA activation during HC relative to LC cues remained stable throughout the course of the experiment. Similar treatment-specific patterns of brain activation were observed for the hypothalamus. The present findings show for the first time in humans that glucose infusion modulates salience coding mediated by the VTA. Hum Brain Mapp 37:4376-4384, 2016. © 2016 Wiley Periodicals, Inc.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6867299 | PMC |
http://dx.doi.org/10.1002/hbm.23316 | DOI Listing |
J Environ Manage
January 2025
Hugh Downs School of Human Communication, United States.
This paper reports a theoretically-driven quantitative content analysis of news media discourse on climate change, its effects, and solutions to understand how US news discourse differs from widely supported scientific conclusions on global climate. Despite the dire warnings and calls to action, US public opinion on the causes and solutions to climate change remain divided. In the global context, the US's split views are anomalous and may be an artifact of the US media's coverage of the climate crisis.
View Article and Find Full Text PDFMed Image Anal
January 2025
Department of Computer and Data Science and Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA.
Accurate automatic polyp segmentation in colonoscopy is crucial for the prompt prevention of colorectal cancer. However, the heterogeneous nature of polyps and differences in lighting and visibility conditions present significant challenges in achieving reliable and consistent segmentation across different cases. Therefore, this study proposes a novel dynamic spectrum-driven hierarchical learning model (DSHNet), the first to specifically leverage image frequency domain information to explore region-level salience differences among and within polyps for precise segmentation.
View Article and Find Full Text PDFJAMA Dermatol
January 2025
Department of Dermatology, University of Pennsylvania, Philadelphia.
Importance: Cutaneous chronic graft-vs-host disease (GVHD) is independently associated with morbidity and mortality after allogeneic hematopoietic cell transplant. However, the health-related quality-of-life (HRQOL) domains that are most important to patients are poorly understood.
Objective: To perform a concept elicitation study to define HRQOL in cutaneous chronic GVHD from the patient perspective and to compare experiences of patients with epidermal vs sclerotic disease.
J Neurosci
January 2025
Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada.
Eye movements in daily life occur in rapid succession and often without a predefined goal. Using a free viewing task, we examined how fixation duration prior to a saccade correlates to visual saliency and neuronal activity in the superior colliculus (SC) at the saccade goal. Rhesus monkeys (three male) watched videos of natural, dynamic, scenes while eye movements were tracked and, simultaneously, neurons were recorded in the superficial and intermediate layers of the superior colliculus (SCs and SCi, respectively), a midbrain structure closely associated with gaze, attention, and saliency coding.
View Article and Find Full Text PDFbioRxiv
December 2024
Center for Neural Science, New York University, New York, NY, USA.
Neocortex-wide neural activity is organized into distinct networks of areas engaged in different cognitive processes. To elucidate the underlying mechanism of flexible network reconfiguration, we developed connectivity-constrained macaque and human whole-cortex models. In our model, within-area connectivity consists of a mixture of symmetric, asymmetric, and random motifs that give rise to stable (attractor) or transient (sequential) heterogeneous dynamics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!