Discovery of HIV Type 1 Aspartic Protease Hit Compounds through Combined Computational Approaches.

ChemMedChem

National Hellenic Research Foundation (NHRF), Institute of Biology, Medicinal Chemistry and Biotechnology (IBMCB), Vassileos-Constantinou-Ave. 48, 11635, Athens, Greece.

Published: August 2016

A combination of computational techniques and inhibition assay experiments was employed to identify hit compounds from commercial libraries with enhanced inhibitory potency against HIV type 1 aspartic protease (HIV PR). Extensive virtual screening with the aid of reliable pharmacophore models yielded five candidate protease inhibitors. Subsequent molecular dynamics and molecular mechanics Poisson-Boltzmann surface area free-energy calculations for the five ligand-HIV PR complexes suggested a high stability of the systems through hydrogen-bond interactions between the ligands and the protease's flaps (Ile50/50'), as well as interactions with residues of the active site (Asp25/25'/29/29'/30/30'). Binding-energy calculations for the three most promising compounds yielded values between -5 and -10 kcal mol(-1) and suggested that van der Waals interactions contribute most favorably to the total energy. The predicted binding-energy values were verified by in vitro inhibition assays, which showed promising results in the high nanomolar range. These results provide structural considerations that may guide further hit-to-lead optimization toward improved anti-HIV drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cmdc.201600220DOI Listing

Publication Analysis

Top Keywords

hiv type 1
8
type 1 aspartic
8
aspartic protease
8
hit compounds
8
discovery hiv
4
protease hit
4
compounds combined
4
combined computational
4
computational approaches
4
approaches combination
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!