Recent large and severe outbreaks of native bark beetles have raised concern among the general public and land managers about potential for amplified fire activity in western North America. To date, the majority of studies examining bark beetle outbreaks and subsequent fire severity in the U.S. Rocky Mountains have focused on outbreaks of mountain pine beetle (MPB; Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests, but few studies, particularly field studies, have addressed the effects of the severity of spruce beetle (Dendroctonus rufipennis Kirby) infestation on subsequent fire severity in subalpine Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) forests. In Colorado, the annual area infested by spruce beetle outbreaks is rapidly rising, while MPB outbreaks are subsiding; therefore understanding this relationship is of growing importance. We collected extensive field data in subalpine forests in the eastern San Juan Mountains, southwestern Colorado, USA, to investigate whether a gray-stage (< 5 yr from outbreak to time of fire) spruce beetle infestation affected fire severity. Contrary to the expectation that bark beetle infestation alters subsequent fire severity, correlation and multivariate generalized linear regression analysis revealed no influence of pre-fire spruce beetle severity on nearly all field or remotely sensed measurements of fire severity. Findings were consistent across moderate and extreme burning conditions. In comparison to severity of the pre-fire beetle outbreak, we found that topography, pre-outbreak basal area, and weather conditions exerted a stronger effect on fire severity. Our finding that beetle infestation did not alter fire severity is consistent with previous retrospective studies examining fire activity following other bark beetle outbreaks and reiterates the overriding influence of climate that creates conditions conducive to large, high-severity fires in the subalpine zone of Colorado. Both bark beetle outbreaks and wildfires have increased autonomously due to recent climate variability, but this study does not support the expectation that post-beetle outbreak forests will alter fire severity, a result that has important implications for management and policy decisions.

Download full-text PDF

Source
http://dx.doi.org/10.1890/15-1121DOI Listing

Publication Analysis

Top Keywords

fire severity
36
spruce beetle
20
bark beetle
16
beetle outbreaks
16
fire
12
beetle
12
subsequent fire
12
beetle infestation
12
severity
11
beetle outbreak
8

Similar Publications

Uncertainty quantification in coupled wildfire-atmosphere simulations at scale.

PNAS Nexus

December 2024

Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA.

Uncertainties in wildfire simulations pose a major challenge for making decisions about fire management, mitigation, and evacuations. However, ensemble calculations to quantify uncertainties are prohibitively expensive with high-fidelity models that are needed to capture today's ever-more intense and severe wildfires. This work shows that surrogate models trained on related data enable scaling multifidelity uncertainty quantification to high-fidelity wildfire simulations of unprecedented scale with billions of degrees of freedom.

View Article and Find Full Text PDF

Intersection of Wildfire and Legacy Mining Poses Risks to Water Quality.

Environ Sci Technol

December 2024

U.S. Geological Survey, Water Resources Mission Area, 3215 Marine Street, Boulder, Colorado 80303, United States.

Mining and wildfires are both landscape disturbances that pose elevated and substantial hazards to water supplies and ecosystems due to increased erosion and transport of sediment, metals, and debris to downstream waters. The risk to water supplies may be amplified when these disturbances occur in the same watershed. This work describes mechanisms by which the intersection of mining and wildfire may lead to elevated metal concentrations in downstream waters: (1) conveyance of metal-rich ash and soil to surface waters, (2) increased dissolution and transport of dissolved metals due to direct contact of precipitation with mine waste, (3) increased erosion and transport of metal-rich sediment from mining waste, (4) remobilization of previously deposited metal-contaminated floodplain sediment by higher postfire flood flows, and (5) increased metal transport from underground mine workings.

View Article and Find Full Text PDF

Encountering Prescribed Fire: Characterizing the Intersection of Prescribed Fire and Wildfire in the CONUS.

ACS EST Air

December 2024

Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States.

Prescribed fire is applied across the United States as a fuel treatment to manage the impact of wildfires and restore ecosystems. While the recent application of prescribed fire has largely been confined to the southeastern US, the increase in catastrophic wildfires has accelerated the growth of prescribed fire more broadly. To effectively achieve wildfire risk reduction benefits, which includes reducing the amount of smoke emitted, the area treated by prescribed fire must come into contact with a subsequent wildfire.

View Article and Find Full Text PDF

Lipoid pneumonia is a rare entity most often associated with inhalation of foreign material (i.e. "fire-eater's lung"), silicone injection, and severe trauma.

View Article and Find Full Text PDF

Background And Objective: The 2014 Hazelwood coal mine fire exposed residents in nearby Morwell to high concentrations of particulate matter <2.5 µm (PM) for approximately 6 weeks. This analysis aimed to evaluate the long-term impact on respiratory health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!