Human activity is accelerating changes in biotic communities worldwide. Predicting impacts of these changes on ecosystem services such as denitrification, a process that mitigates the consequences of nitrogen pollution, remains one of the most important challenges facing ecologists. Wetlands especially are valued as important sites of denitrification, and wetland plants are expected to have differing effects on denitrification. We present the results of a meta-analysis, conducted on 419 published estimates of denitrification in wetlands dominated by different plant species. Plants increased denitrification rates by 55% on average. This effect varied significantly among communities as defined by the dominant plant species, but surprisingly did not differ substantially among methods for measuring denitrification or among types of wetlands. We conclude that mechanistically linking functional plant traits to denitrification will be key to predicting the role of wetlands in nitrogen mitigation in a changing world.

Download full-text PDF

Source
http://dx.doi.org/10.1890/14-1525DOI Listing

Publication Analysis

Top Keywords

wetland plants
8
denitrification
8
denitrification rates
8
plant species
8
effects wetland
4
plants denitrification
4
rates meta-analysis
4
meta-analysis human
4
human activity
4
activity accelerating
4

Similar Publications

Textile wastewater poses significant risks if discharged untreated, especially due to the presence of synthetic dyes, salts, and heavy metals. As a result, constructed wetlands have emerged as a promising solution for sustainable textile wastewater management. In this context, this study evaluates a micro-scale vertical subsurface flow constructed wetland (VSSFCW) for treating textile wastewater.

View Article and Find Full Text PDF

Manganese-modified reed biochar decreased nutrients and methane release from algae debris-contaminated sediments.

Environ Res

January 2025

Jiangsu Water Conservancy Construction Engineering co.,ltd, Yangzhou, P. R. China.

Biochar is one of the ways for carbon storage, pollution control and biosolid reuse. Aquatic plant reeds are widely used in nutrient removal in wetlands and have huge biomass. Nonetheless, little is known regarding the effects of reed-based biochar on sediments.

View Article and Find Full Text PDF

Effects of wetland disturbance on methane emissions and influential factors: A global meta-analysis of field studies.

Sci Total Environ

January 2025

State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China. Electronic address:

Wetlands, one of the largest source of methane (CH) on Earth, are undergoing extensive disturbance globally, resulting in profound impacts on global changes. This study conducted a comprehensive global meta-analysis of field studies to assess the effects of wetland disturbance on CH emissions and the key factors influencing these changes. Our analysis indicates that while CH emissions generally decrease following wetland disturbance, the global warming potential does not necessarily diminish compared to that of natural wetlands.

View Article and Find Full Text PDF

Water diversions can mitigate water scarcities by strategically reallocating water resources. Despite their benefits, these interventions may profoundly affect biodiversity and multiple ecological functions ("multifunctionality") within highly managed lake systems. However, the specific impact of such interventions on the relationship between biodiversity and multifunctionality remains elusive, which limits our grasp of how water regulation shapes the dynamics of managed lake ecosystems.

View Article and Find Full Text PDF

Using different configurations of -planted constructed wetland-microbial fuel cells to remove Cr (Ⅵ) and p-chlorophenol and generate electricity.

Environ Technol

January 2025

Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, People's Republic of China.

P-chlorophenol (4-CP) and hexavalent chromium (Cr (VI)) are predominant contaminants in industrial effluents, eliciting substantial environmental and human health concerns. As a strong oxidant, Cr (Ⅵ) has the potential to facilitate the removal of 4-CP. However, the specific removal effect remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!