The taxonomic composition of biofilms on marine microplastics is widely unknown. Recent sequencing results indicate that potentially pathogenic Vibrio spp. might be present on floating microplastics. Hence, these particles might function as vectors for the dispersal of pathogens. Microplastics and water samples collected in the North and Baltic Sea were subjected to selective enrichment for pathogenic Vibrio species. Bacterial colonies were isolated from CHROMagar™Vibrio and assigned to Vibrio spp. on the species level by MALDI-TOF MS (Matrix Assisted Laser Desorption/Ionisation - Time of Flight Mass Spectrometry). Respective polymers were identified by ATR FT-IR (Attenuated Total Reflectance Fourier Transform - Infrared Spectroscopy). We discovered potentially pathogenic Vibrio parahaemolyticus on a number of microplastic particles, e.g. polyethylene, polypropylene and polystyrene from North/Baltic Sea. This study confirms the indicated occurrence of potentially pathogenic bacteria on marine microplastics and highlights the urgent need for detailed biogeographical analyses of marine microplastics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marenvres.2016.07.004DOI Listing

Publication Analysis

Top Keywords

pathogenic vibrio
16
vibrio spp
12
marine microplastics
12
microplastic particles
8
pathogenic
5
vibrio
5
microplastics
5
dangerous hitchhikers?
4
hitchhikers? evidence
4
evidence pathogenic
4

Similar Publications

Biological studies reveal the role of trpA gene in biofilm formation, motility, hemolysis and virulence in Vibrio anguillarum.

Microb Pathog

January 2025

Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China. Electronic address:

Vibrio anguillarum is a pathogen responsible for vibriosis in aquaculture animals. The formation of bacterial biofilm contributes to infections and increases resistance to antibiotics. Tryptophanase and its substrate tryptophan have been recognized as signal molecules regulating bacterial biofilm formation.

View Article and Find Full Text PDF

Genomic Insight into Isolates from Fresh Raw Mussels and Ready-to-Eat Stuffed Mussels.

Pathogens

January 2025

Department of Aquatic Animal Disease, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Türkiye.

Consuming raw or undercooked mussels can lead to gastroenteritis and septicemia due to contamination. This study analyzed the prevalence, density, species diversity, and molecular traits of spp. in 48 fresh raw wild mussels (FRMs) and 48 ready-to-eat stuffed mussels (RTE-SMs) through genome analysis, assessing health risks.

View Article and Find Full Text PDF

Antimicrobial Efficacy of Trifluoro-Anilines Against Species.

Int J Mol Sci

January 2025

School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.

are naturally present in marine ecosystems and are commonly allied with live seafood. species frequently cause foodborne infections, with recently becoming a significant contributor to foodborne illness outbreaks. In response, aniline and 68 of its aniline derivatives were studied due to their antibacterial effects targeting and .

View Article and Find Full Text PDF

() is a Gram-negative, halophilic bacillus known for causing severe infections such as gastroenteritis, necrotizing fasciitis, and septic shock, with mortality rates exceeding 50% in high-risk individuals. Transmission occurs primarily through the consumption of contaminated seafood, exposure of open wounds to infected water, or, in rare cases, insect bites. The bacterium thrives in warm, brackish waters with high salinity levels, and its prevalence is rising due to the effects of climate change, including warming ocean temperatures and expanding coastal habitats.

View Article and Find Full Text PDF

Development and Application of PSCPL13 Probiotics in Olive Flounder () Farming.

Microorganisms

January 2025

Laboratory of Veterinary Pharmacokinetics, Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea.

Aquaculture has grown significantly, contributing to global food security and sustainability; however, intensified fish farming has increased disease susceptibility and antibiotic resistance. This study assessed the probiotic potential of PSCPL13 (hereafter, PSCPL13), isolated from the intestines of Japanese eels, for enhancing the health of olive flounder. After screening 16 isolates, PSCPL13 was selected because of its potential broad-spectrum antibacterial activity against many pathogens, such as and .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!