Based on multiple quantum wells, we design a pumping-detection quantum cascade structure for the detection of terahertz (THz) radiation. In the structure, carriers are first pumped by a mid-infrared (MIR) laser to an excited state, to get enough energy space for the following fast longitudinal optical (LO) phonon extraction. Within the LO-phonon extraction stair, an absorption well is designed for THz detection. Due to the establishment of LO-phonon stair extractor, carriers transport between quantum wells in picosecond range and a high responsivity for THz absorption can be obtained. We also find that doping in both MIR active well and extractor region is significant for high-speed response of the THz detection. Our design is expected to extend the high-sensitive detection of a quantum cascade photodetector from middle wave of MIR to THz region.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.24.015180DOI Listing

Publication Analysis

Top Keywords

quantum cascade
12
cascade structure
8
quantum wells
8
thz detection
8
detection
5
thz
5
mid-infrared-pumped quantum
4
structure high-sensitive
4
high-sensitive terahertz
4
terahertz detection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!