In this paper, we present a comprehensive simulation-based analysis of the two photonic effects of a Bragg stack - a modified local density of photon states (LDOS) and an enhanced local irradiance - on the upconversion (UC) luminescence and quantum yield of the upconverter β-NaYF doped with 25% Er. The investigated Bragg stack consists of alternating layers of TiO and Poly(methylmethacrylate), the latter containing upconverter nanoparticles. Using experimentally determined input parameters, the photonic effects are first simulated separately and subsequently coupled in a rate equation model, describing the dynamics of the UC processes within β-NaYF:25% Er. With this integrated simulation model, the Bragg stack design is optimized to maximize either the UC quantum yield (UCQY) or UC luminescence. We find that in an optimized Bragg stack, due to the modified LDOS, the maximum UCQY is enhanced from 14% to 16%, compared to an unstructured layer of upconverter material. Additionally, this maximum UCQY can already be reached at an incident irradiance as low as 100 W/m. With a Bragg stack design that maximizes UC luminescence, enhancement factors of up to 480 of the UC luminescence can be reached.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.24.014895DOI Listing

Publication Analysis

Top Keywords

bragg stack
20
photonic effects
12
quantum yield
12
modified local
8
local density
8
stack modified
8
stack design
8
maximum ucqy
8
luminescence
5
bragg
5

Similar Publications

Article Synopsis
  • The study presents a method for creating twisted helical cellulose nanocrystal films using 3D printing, achieving unique optical properties.
  • The films exhibit high transparency and dual circular polarization, with different types depending on the printing orientation.
  • These materials have potential applications in photonics, thermal management, and energy efficiency due to their ability to manipulate light in the near-infrared region.
View Article and Find Full Text PDF

We demonstrate optical nonthermal excitation of exchange dominated spin waves of different orders in a magnetophotonic crystal. The magnetophotonic structure consists of a thin magnetic film and a Bragg stack of nonmagnetic layers to provide a proper nonuniform interference pattern of the inverse Faraday effect induced by light in the magnetic layer. We found a phenomenon of the pronounced phase slippage of the inverse Faraday effect distribution when the pump wavelength is within the photonic band gap of the structure.

View Article and Find Full Text PDF

Controlled tailoring of atomically thin MXene interlayer spacings by surfactant/intercalants (e.g., polymers, ligands, small molecules) is important to maximize their potential for application.

View Article and Find Full Text PDF

The precise, rapid and direct visualization of 3D topographical dose in the target tissue that is crucial for effective radiation therapy remains a challenge. Herein, by combining hydrogel photonic crystals with film stacking or 3D printing, a 3D radiochromic dosimeter with a dose sensitivity of up to 10 nm Gy, a spatial resolution <50 μm, and the ability to detect complex 3D topographical dose distribution was proposed for clinical radiation dose verification. The sensitivity and response range of the dosimeter by radiation-induced polymer cross-linking and consequent Bragg wavelength shift can be tuned the solid content and extent of acrylate modification.

View Article and Find Full Text PDF

Volume Bragg gratings are a useful tool for spectral manipulation in a variety of settings. In a previous paper [Astron. & Astrophys.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!